
Gajentaan & Overmars [3] used the following problem to show that other problems are probably
not in subquadratic time.

Problem 0.1. 3SUM INSTANCE: n integers. QUESTION: Do three of the integers sum to 0?
NOTE: We consider any arithmetic operation to be unit cost.

The following theorem gives better and better algorithms for 3SUM.

Theorem 1.

1. 3SUM can be solved in O(n3) time.

2. 3SUM can be solved in O(n2 log n) time.

3. 3SUM can be solved in randomized O(n2) time.

4. 3SUM can be solved in deterministic O(n2) time.

Proof. Let A be the original input of n integers.
1) The trivial algorithms suffice to get O(n3) time: check all O(n3) 3-sets of A to see if any of them
sum to 0.

2) First compute all the pairwise sums of A and sort them into an array B. This takes O(n2 log n)
steps. Then, for each element of A, use binary search to see if its negation is in B. This takes
O(n log n) steps. If you find a negation in B then the answer is YES, otherwise NO.

3) Let p be a prime close to n2. We will have a hash table of size p. The number z will go into cell
z (mod p) of the hash table.

For all 1 ≤ i < j ≤ n put −(xi + xj) (along with (xi, xj)) into the hash table. This takes O(n2)
steps. Then, for each element of x ∈ A hash it into the table. See if there is at least one pair already
there. If there is then with high probability there are O(1) paris there. See if any of the sums in
that entry of the hash table, sum with x to 0. If so then output YES and halt. If for no x ∈ A do
you get a YES then output NO. For each x, With high probability every x will be involved with
O(1) checks, so the expected run time is O(n2).

4) First sort A. This takes O(n log n) steps. Place a pointer at both the front and the end of A.
Then, for each x ∈ A, do the following: If the sum of the integers at the two pointers and x is
smaller than 0, then move the first array’s pointer forward; if the sum is larger than 0, then move
the second array’s point backwards; otherwise, we have the three integers sum to 0, and we output
YES and are done. If the two pointers crossover, then move onto the next integer in A. This
algorithm clearly takes O(n2) time.

Exercise 1. Code up all four algorithms in Theorem 1. Run them on data and see which ones do
well when.

Is there an algorithm for 3SUM that runs in time better than O(n2)? This depends on your
definition of “better”. The following are known:

1. If the integers are in [−u, u] then 3SUM can be solved in O(n+ u log n) time. We leave this
an an exercise.
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2. Baran et al. [1] showed the following: Assume the word-RAM model which can manipulate
log n-bit words in constant time. Then there is a randomized algorithm for 3SUM that takes
time

O

(
n2(log log n)2

(log n)2

)
.

3. Gronlund & Pettie [4] have shown that there is a randomized algorithm for 3SUM that takes
time

O

(
n2 log log n

log n

)
and a deterministic algorithm that takes time

O

(
n2(log log n)2/3

(log n)2/3

)
.

4. Chan [2] has shown there is a deterministic algorithm for 3SUM that runs in time

O

(
n2(log log n)O(1)

log2(n)

)
.

5. Gronlund & Pettie [4] have also shown that there exists a decision tree algorithm that had
depth (so time) O(n1.5

√
log n) for 3SUM. Their proof does not show how to actually construct

the decision tree in subquadratic time.

Exercise 2. Show that if the integers are in [−u, u] then 3SUM can be solved in O(n + u log n)
time.

While the algorithms above are impressive and very clever none are that much better than
O(n2). We need a definition for “much better than O(n2)”.

Definition 1. An algorithm is subquadratic if there exists ϵ > 0 such that it runs in time O(n2−ϵ).

Despite enormous effort nobody has obtained a subquadratic algorithm for 3SUM. Hence the
conjecture is that there is no such algorithm.

ADDED LATER IN RESPONSE TO COMMENT: There is also no randomized algorithm for
3SUM. Perhaps the conjecture should be modified to also exclude that possibility.

References

[1] I. Baran, E. D. Demaine, and M. Patrascu. Subquadratic algorithms for 3sum. Algorithmica,
50(4):584–596, 2008.
https://doi.org/10.1007/s00453-007-9036-3.

[2] T. M. Chan. More logarithmic-factor speedups for 3sum, (median, +)-convolution, and some
geometric 3sum-hard problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020.
https://doi.org/10.1145/3363541.

2



[3] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational geometry.
Computational Geometry, 45(4):140–152, 2012.
https://doi.org/10.1016/j.comgeo.2011.11.006.

[4] A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. Journal of the Asso-
ciation of Computing Machinery (JACM), 65(4):22:1–22:25, 2018.
https://doi.org/10.1145/3185378.

3


