
The Unit Graph on Z, Q, R: An Exposition
By William Gasarch

1 Introduction

Most of this writuep is from Chilakamarri [1].
We consider the following three graphs.

Definition 1. Let n ≥ 1z. We use x and y for n tuples.

1. GZn is the graph with

V = Zn

E = {(x, y) ∈ Zn × Zn : d(x, y) = 1}

2. GQn is the graph with

V = Qn

E = {(x, y) ∈ Qn × Qn : d(x, y) = 1}

3. GRn is the graph with

V = Rn

E = {(x, y) ∈ Rn × Rn : d(x, y) = 1}

The chromatic number of GR2 , χ(GR2), is a well known open problem. It is called the Hadwiger-
Nelson problem. See HERE for the Wikipedia site. It is fairly easy to prove that 4 ≤ χ(GR2) ≤ 7.
Audrey de Grey [2] used a computer proof to show that 5 ≤ χ(GR2).

In this paper we explore graph properties of GZn , GQn , and GRn .

2 Connectivity: The n = 1 Case

This is trivial but we include it for completeness.

Theorem 2. Let n = 1. Then GZn, GQn, and GRn are all disconnected.

Proof. Let x = 0 and y = 1
2 . If x and y are connected then the d(x, y) ∈ N. Hence x and y are not

connected.

For the rest of this section we assume n ≥ 2.

3 Connectivity for GZn

This is trivial but we include it for completeness.

Theorem 3. Let n ≥ 2. Then GZn is connected.

Proof. Let x, y ∈ Zn.
Let
x = (x1, . . . , xn)
y = (y1, . . . , yn).
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Assume x1 < y1 (the proof for x1 > y1 is similar).
The following is a path in GZn .
(x1, x2, . . . , xn), (x1 + 1, x2, . . . , xn), (x1 + 2, x2, . . . , xn), . . ., (y1, x2, . . . , xn).
Repeat this procedure on each coordinate to get (y1, . . . , yn).

4 Connectivity for GQn

This is the most interesting case for connectivity. We will prove that

1. For n = 2, 3, 4 GQn is disconnected.

2. For n ≥ 5, GQn is connected.

We will need the following lemma for both parts. We omit the proof which is just simple
calculation

Lemma 4. Let a, b, c ∈ Z.

1. a2 ≡ 0, 1, 4 (mod 8).

2. a2 + b2 ≡ 0, 1, 2, 4, 5 (mod 8).

3. a2 + b2 + c2 ≡ 0, 1, 2, 3, 4, 5, 6 (mod 8).

4.1 For n ∈ {2, 3, 4}, GQn is not Connected

With the benefit of hindsight, we note a difference between n = 2, 3, 4 and n ≥ 5.

Lemma 5.

1. If a21 + a22 = b2 and gcd(a1, a2, b) = 1 then b ̸≡ 0 (mod 4).

2. If a21 + a22 + a23 = b2 and gcd(a1, a2, a3, b) = 1 then b ̸≡ 0 (mod 4).

3. If a21 + a22 + a23 + a24 = b2 and gcd(a1, a2, a3, a4, b) = 1 then b ̸≡ 0 (mod 4).

4. There exists a1, a2, a3, a4, , a5, b such that gcd(a1, a2, a3, a4, a5, b) = 1 and b ≡ 0 (mod 4).

Proof.
The proofs of parts 1,2, and 3 are by contradiction. We use the fact that if for all a ∈ Z,

a2 ≡ 0, 1, 4 (mod 8).

1. Assume a21 + a22 = b2. and b ≡ 0 (mod 4). Then b2 ≡ 0 (mod 8). Hence

a21 + a22 = b2 ≡ 0 (mod 8).

Since gcd(a1, a2, b) = 1, at least one of a1, a2 is odd. Assume its a1. Then

a21 ≡ 1 (mod 8).

By Lemma 4.a
a22 ≡ 0, 1, 4 (mod 8).

Hence
a21 + a22 ≡ 1, 2, 5 ̸≡ 0 (mod 8)

which is a contradiction.
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2. Assume a21 + a22 + a23 = b2 and b ≡ 0 (mod 4). Then b2 ≡ 0 (mod 8). Hence

a21 + a22a
2
3 = b2 ≡ 0 (mod 8).

Since gcd(a1, a2, a3) = 1, at least one of a1, a2, a3 is odd. Assume its a1. Then

a21 ≡ 1 (mod 8).

By Lemma 4.b
a22 + a23 ≡ 0, 1, 2, 4, 5 (mod 8)

Hence

a21 + a22 + a23 ≡ 1, 2, 3, 4, 6 ̸≡ 0 (mod 8)

which is a contradiction.

3. Assume a21 + a22 + a23 + a24 = b2. and b ≡ 0 (mod 4). Then b2 ≡ 0 (mod 8). Hence

a21 + a22a
2
3 + a24 = b2 ≡ 0 (mod 8).

Since gcd(a1, a2, a3, a4, b) = 1, at least one of a1, a2, a3, a4 is odd. Assume its a1. Then

a21 ≡ 1 (mod 8).

By Lemma 4.c
a2 + a23 + a24 ≡ 0, 1, 2, 3, 4, 5, 6 (mod 8).

Hence

a21 + a22 + a23 + a24 ≡ 1, 2, 3, 4, 5, 6, 7 ̸≡ 0 (mod 8).

which is a contradiction.

4. The following values satisfy the conditions: a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 19. b = 20.

Lemma 6. If a sum of rationals equals 1
4 then at least one of them has a denominator divisible by

4.

Proof. Assume, by way of contradiction, that there exists rationals a1
b1
, . . . , akbk such that

k∑
i=1

ai
bi

=
1

4

and, for all i, bi ̸≡ 0 (mod 4).
Partition {1, . . . , k} as follows.
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1. Let X be the set of all i such that

bi ̸≡ 0 (mod 2).

Note that

∑
i∈X

ai
bi

=
cX
dX

where cX ̸≡ 0 (mod 2).

2. Let Y be the set of all i such that

bi ≡ 2 (mod 4).

For i ∈ Y let ci be such that bi = 4ci + 2. Note that

∑
i∈Y

ai
bi

=
∑
i∈Y

ai
4ci + 2

=
1

2

∑
i∈Y

ai
22ci + 1

=
cY
2dY

where cY ̸≡ 0 (mod 2).

Since (∀i)[bi ̸≡ 0 (mod 4)], X ∪ Y is a partition of {1, . . . , k}. Hence using the comments made
when defining the partition we have

k∑
i=1

ai
bi

=
∑
i∈X

ai
bi

+
∑
i∈Y

ai
bi

=
cX
dX

+
cY
2dY

=
1

4
.

Multiply both sides by 4dXdY to get

4cXdY + 2cY dX = 1.

The left hand side is even and he right hand side is odd, which is a contradiction.

We state but do not prove a generalization of Lemma 6. We will not be needing it.

Lemma 7. Let p be a prime and e ≥ 1. If a sum of rationals equals 1
pe then at least one of them

has a denominator divisible by pe.

Lemma 8. Let n ≥ 1. Let p ∈ Q2. Then there exists a1, a2, b such that the following hold.

1. p = (a1b ,
a2
b ) (note that both fractions have the same denominator).

2. gcd(a1, a2, b) = 1.

Proof. Let p be given as

(
c1
d1

,
c2
d2

).

Then p is also
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(
c1d2
d1d2

,
c2d1
d1d2

).

If gcd(c1d2, c2, d1, d1d2) = 1 then we set a1 = c1d2, a2 = c2d1, b = d1d2. If gcd(c1d2, c2, d1, d1d2) =
e ≥ 2 then we set a1 = c1d2/e, a2 = c2d1/e, b = d1d2/e.

Theorem 9. The graphs GQ2, GQ3, and GQ4 are not connected.

Proof. We do the proof for GQ2 . The proof is almost identical for GQ3 and GQ4 . We will note the
one place we use n = 2 and say how to modify for GQ3 and GQ4 .

Assume, by way of contradiction, that GQ2 is connected. Let x = (0, 0) and y = (14 , 0). Let the
path between them be

x, x1, x2, . . . , xk, y.

d(x, x1) = 1. So x− x1 is on the unit sphere. d(x1, x2) = 1. So x2 − x1 is on the unit sphere.
...
d(xk−1, xk) = 1. So xk − xk−1 is on the unit sphere.
d(xk, y) = 1. So y − xk is on the unit sphere.
Add up all of those points on the unit sphere. You get

(x− x1) + (x1 − x2) + · · ·+ (xk − xk−1) + y − xk = x+ y = y.

UPSHOT: (14 , 0) is the sum of points on the unit sphere.
Let z1, . . . , zk be the points on the unit sphere that add up to (14 , 0). For 1 ≤ i ≤ k let

zi = (ai1bi ,
ai2
bi

with gcd(ai1, ai2, bi) = 1 (we are using Lemma 8).
Since zi is on the unit sphere

a2i1 + a2i2 = b2i .

By Lemma 5.a, bi ̸≡ 0 (mod 4). (We use Lemma 5.a since we are dealing with GQ2 . For GQ3

we use Lemma 5.b. For GQ4 we use Lemma 5.c. ) More to the point,

(∀1 ≤ i ≤ k)[bi ̸≡ 0 (mod 4)].

Since
∑k

i=1 zi = (14 , 0).

k∑
i=1

ai1
bi

=
1

4
.

By Lemma 6

(∃1 ≤ i ≤ k)[bi ≡ 0 (mod 4).

This is a contradiction.
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4.2 For n ≥ 5 GQn is Connected

With the benefit of hindsight, we note a difference between n = 2, 3, 4 and n ≥ 5.

Lemma 10.

1. Let n ≥ 5. For all N ∈ N, 4N2 can be written as the sum of n squares, one of which is 1.

2. Let n ≤ 4. For an infinite number of N ∈ Z, 4N2 cannot be written as the sum of n squares,
one of which is 1.

Proof.

1. Recall that every number is the sum of 4 squares. Hence there exists a, b, c, d such that

4N2 − 1 = a2 + b2 + c2 + d2

4N2 = a2 + b2 + c2 + d2 + 1

2. Let N ≡ 0 (mod 2). Assume, by way of contradiction, that there exists a, b, c such that

4N2 = a2 + b2 + c2 + 1

4N2 − 1 = a2 + b2 + c2

4N2 − 1 ≡ a2 + b2 + c2 (mod 8).

Since N ≡ 0 (mod 2) the left hand side is ≡ 7 (mod 8). By Lemma 4.c the right hand side
is ≡ 0, 1, 2, 3, 4, 5, 6. Hence they are not equal mod 8. That is a contradiction.

Lemma 11. Let N ∈ Z− {0}.

1. In GQ5 there is a path between (0, 0, 0, 0, 0) and ( 1
N , 0, 0, 0, 0).

2. Let n ≥ 5. Let 1 ≤ i ≤ n. In GQn there is a path between (0, . . . , 0) and (0, 0, . . . , 0 1
N , 0, . . . , 0)

(the 1
N is in the ith place).

Proof. We prove part 1. The proof of part 2 is similar.
By Lemma 10 there exists a, b, c, d such that

4N2 = 1 + a2 + b2 + c2 + d2

Divide by 4N2 to get:

1 =

(
1

2N

)2

+

(
a

2N

)2

+

(
b

2N

)2

+

(
c

2N

)2

+

(
d

2N

)2

Hence the following 25 vectors are all on the Q5-unit sphere:
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(
± 1

2N
,± a

2N
,± b

2N
,± c

2N
,± d

2N
,

)
We now describe the path from (0, 0, 0, 0, 0) to ( 1

N , 0, 0, 0, 0) by adding just two Q5-unit sphere
vectors to (0, 0, 0, 0, 0) to get ( 1

N , 0, 0, 0, 0)

(0, 0, 0, 0, 0) +

(
1

2N
,
a

2N
,

b

2N
,

c

2N
,
d

2N
,

)
+

(
1

2N
,− a

2N
,− b

2N
,− c

2N
,− d

2N
,

)
=

(
1

N
, 0, 0, 0, 0

)

Lemma 12. Let n ≥ 1. Let x, y ∈ GQn. If there is a path from 0n to x and from 0n to y then there
is a path from 0n to x+ y.

Proof.

Theorem 13. Let n ≥ 5. Then GQn is connected.

Proof. We show that, for every vertex x of GQn , there is a path from (0, . . . , 0) to x. Let

x = (
a1
N1

, . . . ,
bn
Nn

).

By Lemma 11 there is a path from 0n to ( 1
N , 0, . . . , 0). From this and Lemma 12 there is a path

from 0n to.
CONTINUE LATER
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