The Unit Graph on Z, Q, R: An Exposition

1 Introduction

By William Gasarch

Most of this writuep is from Chilakamarri [IJ.
We consider the following three graphs.

Definition 1. Let n > 1z. We use z and y for n tuples.

1. Gzn is the graph with

2. Gqn is the graph with

3. GRrn is the graph with

V= 2z
E= {(z,y)€Z"xZ": d(z,y) =1}

V= Q"
E= {(z,y) € Q" xQ": d(z,y) =1}

V= R
E= {(z,y) e R" xR": d(z,y) =1}

The chromatic number of Grz, x(GRr2), is a well known open problem. It is called the Hadwiger-
Nelson problem. See HERE for the Wikipedia site. It is fairly easy to prove that 4 < yx(Gge) < 7.
Audrey de Grey [2] used a computer proof to show that 5 < x(Gg2).

In this paper we explore graph properties of Gzn, Gqn, and Grn.

2 Connectivity: The n =1 Case

This is trivial but we include it for completeness.

Theorem 2. Let n =1. Then Gzn, Gqn, and Grn are all disconnected.

Proof. Let x =0 and y = % If x and y are connected then the d(x,y) € N. Hence z and y are not

connected.

O

For the rest of this section we assume n > 2.

3 Connectivity for Gz

This is trivial but we include it for completeness.

Theorem 3. Let n > 2. Then Gz is connected.

Proof. Let z,y € Z™.
Let
x=(T1,...,2p)
Y= (Y1, Yn)-


https://en.wikipedia.org/wiki/Hadwiger%E2%80%93Nelson_problem

Assume x1 < y; (the proof for z1 > y; is similar).

The following is a path in Gzn.

(1,22, ..., Tpn), (1 + 1,22, ... 2n), (T1+ 2,22, ..., Zn)y -+, (Y1,22,...,Tp).

Repeat this procedure on each coordinate to get (yi,...,yn)- O

4 Connectivity for Ggn

This is the most interesting case for connectivity. We will prove that

1. For n = 2,3,4 Gqn is disconnected.

2. For n > 5, Gqn is connected.

We will need the following lemma for both parts. We omit the proof which is just simple
calculation

Lemma 4. Let a,b,c € Z.
1. > =0,1,4 (mod 8).
2. a®>+b*=0,1,2,4,5 (mod 8).
3. a?+b>+c2=0,1,2,3,4,5,6 (mod 8).

4.1 For n € {2,3,4}, G is not Connected

With the benefit of hindsight, we note a difference between n = 2,3,4 and n > 5.
Lemma 5.
1. If a? + a3 = b? and ged(ay, az,b) =1 then b# 0 (mod 4).
2. If a3 + a3 + a3 = b? and ged(ay,az,a3,b) =1 then b # 0 (mod 4).
3. If a3 + a3 + a3 + a3 = b2 and ged(ay, az,az,a4,b) = 1 then b # 0 (mod 4).
4. There exists a1, az, a3, aq, ,as,b such that ged(a1,as,as,as,as,b) =1 and b =0 (mod 4).

Proof.
The proofs of parts 1,2, and 3 are by contradiction. We use the fact that if for all a € Z,
a?=0,1,4 (mod 8).

1. Assume a? + a3 = b%. and b =0 (mod 4). Then b*> =0 (mod 8). Hence

a?4+a3=0"=0 (mod8).

Since ged(aq, az,b) = 1, at least one of a1, as is odd. Assume its a;. Then

a?=1 (mod 8).

By Lemma [dla
a3=0,1,4 (mod 8).

Hence
a?+a3=1,2,5#0 (mod 8)

which is a contradiction.



2. Assume a? + a3 + a3 =b? and b= 0 (mod 4). Then b> =0 (mod 8). Hence

a3+ a2 =0"=0 (mod 8).
Since ged(ag, ag,as) = 1, at least one of ay, ag, a3 is odd. Assume its aj. Then
a? =1 (mod 8).

By Lemma [4]b
a3 +a2=0,1,2,4,5 (mod 8)

Hence
a?+a3+a3=1,2,3,4,6#0 (mod 8)

which is a contradiction.

3. Assume a? + a2 + a% 4+ a2 =% and b=0 (mod 4). Then b?> =0 (mod 8). Hence

a? +ada3+ai=b"=0 (mod 8).
Since ged(ayg, ag, as, aq,b) = 1, at least one of a1, ag, as, as is odd. Assume its a;. Then
a?=1 (mod 8).

By Lemma [lc
as+a3+ai=0,1,2,3,4,56 (mod 8).

Hence
2 2 2 2 _
ai +a3+a5+a;=1,2,3,4,5,6,7#0 (mod 8).
which is a contradiction.

4. The following values satisfy the conditions: a1 =1, as =2, a3 =3, a4 = 5, a5 = 19. b = 20.

O
Lemma 6. If a sum of rationals equals % then at least one of them has a denominator divisible by
4.
Proof. Assume, by way of contradiction, that there exists rationals %, R ‘;—: such that
b a; 1
2

and, for all 7, b; Z 0 (mod 4).
Partition {1,...,k} as follows.



1. Let X be the set of all 7 such that

bi 3_’5 0 (mod 2).

Note that

where cx # 0 (mod 2).

2. Let Y be the set of all 7 such that

b =2 (mod 4).

For i € Y let ¢; be such that b; = 4¢; + 2. Note that

a; a; _1 a; ¢y
bi_iezy4ci+2 2;22@“ 2dy

ey
where ¢y # 0 (mod 2).

Since (Vi)[b; # 0 (mod 4)], X UY is a partition of {1,...,k}. Hence using the comments made
when defining the partition we have

Multiply both sides by 4d Xdy to get

4CXdY + QCde = 1.
The left hand side is even and he right hand side is odd, which is a contradiction. O
We state but do not prove a generalization of Lemma [l We will not be needing it.

Lemma 7. Let p be a prime and e > 1. If a sum of rationals equals I% then at least one of them
has a denominator divisible by p°.

Lemma 8. Let n > 1. Let p € Q%. Then there exists a1, as,b such that the following hold.
1. p= (%, %) (note that both fractions have the same denominator).
2. gcd(al,ag,b) =1.

Proof. Let p be given as

c1 Cz>
dy’ dy’
Then p is also



cidy cody

(dldg’ didy””
Ifng(CldQ, Co, dl, dldg) = 1 then we set a)p = Cldg, a9 = ngl, b= dldg. Ifgcd(cldg, CQ,dl, dldg) =
e > 2 then we set a1 = cida/e, ag = cady /e, b = dyda/e. O

Theorem 9. The graphs Gz, Gqs, and G are not connected.

Proof. We do the proof for Ggz. The proof is almost identical for Gqs and Gqs. We will note the
one place we use n = 2 and say how to modify for Ggs and Gga.

Assume, by way of contradiction, that Gq is connected. Let z = (0,0) and y = (%, 0). Let the
path between them be

x7$17x2” * "‘/L‘k7y'

d(z,z1) = 1. So © — x1 is on the unit sphere. d(z1,22) = 1. So 22 — 1 is on the unit sphere.

d(zk_1,7) = 1. So x — Tk_1 is on the unit sphere.
d(xzk,y) = 1. So y — xy is on the unit sphere.
Add up all of those points on the unit sphere. You get

(1:—:51)+(x1—x2)+-'-+($kka_1)+yf:ck:x+y:y.

UPSHOT: (4,0) is the sum of points on the unit sphere.

Let z1,...,2z; be the points on the unit sphere that add up to (i,O). For 1 < i < k let

Z; = (“b%, % with ged (a1, ai2,b;) = 1 (we are using Lemma .

Since z; is on the unit sphere

2 2 _ 12
ai1+ai2—bi.

By Lemma [5la, b; # 0 (mod 4). (We use Lemma [5la since we are dealing with Gqz. For Ggs
we use Lemma [5\b. For G4 we use Lemma c. ) More to the point,

(V1 <i<k)b;Z0 (mod 4)].
Since Y8 |z = (1,0).

By Lemma [6]

This is a contradiction.



4.2 For n > 5 Gg» is Connected
With the benefit of hindsight, we note a difference between n = 2,3,4 and n > 5.
Lemma 10.
1. Letn > 5. For all N € N, 4N? can be written as the sum of n squares, one of which is 1.

2. Let n < 4. For an infinite number of N € Z, 4N? cannot be written as the sum of n squares,
one of which is 1.

Proof.

1. Recall that every number is the sum of 4 squares. Hence there exists a, b, ¢, d such that

AN? —1=a’+ >+ 2 +d?

AIN? =’ + P+ 2+ d* + 1

2. Let N =0 (mod 2). Assume, by way of contradiction, that there exists a, b, ¢ such that

AN? = > + b2+ 2 +1
AN? 1 =a>+ b+

AN? —1=a?> +b0* 4+ (mod 8).

Since N = 0 (mod 2) the left hand side is = 7 (mod 8). By Lemma [d]c the right hand side
is =0,1,2,3,4,5,6. Hence they are not equal mod 8. That is a contradiction.

0
Lemma 11. Let N € Z — {0}.

1. In Ggs there is a path between (0,0,0,0,0) and (%,0,0,0,0).

2. Letn>5. Let1 <i<mn. InGqn there is a path between (0,...,0) and (0,0,...,0%,0,...,0)
(the % is in the ith place).

Proof. We prove part 1. The proof of part 2 is similar.
By Lemma [10] there exists a, b, ¢, d such that

AN’ =14 a2+ + 2+ d2
Divide by 4N? to get:

1= (o) )+ (a) )+ ()

Hence the following 2° vectors are all on the Q®-unit sphere:



1 a b c d
(imﬁmwQN’mwzw>
We now describe the path from (0, 0,0,0,0) to (%, 0,0,0,0) by adding just two Q°-unit sphere
vectors to (0,0,0,0,0) to get (%,0,0,0,0)

00,000+, b ¢ dN (L _a b ¢ dN_ (15600
R 2N’ 2N’ 2N’ 2N’ 2N’ 2N’ 2N’ 2N’ 2N’ 2N’ ) \N' 777
]

Lemma 12. Letn > 1. Let x,y € Gqn. If there is a path from 0" to x and from 0" to y then there
is a path from 0" to x + y.

Proof. O
Theorem 13. Let n > 5. Then Gqn is connected.
Proof. We show that, for every vertex x of Gqn, there is a path from (0,...,0) to z. Let

o bi)
NN
By Lemma there is a path from 0" to (%, 0,...,0). From this and Lemma there is a path

from 0" to.
CONTINUE LATER

o=

O]

References

[1] K. B. Chilakamarri. Unit distance graphs in rational n-space. Discrete Mathematics, 69:213—
218, 1988. link.

[2] A. de Grey. The chromatic number of the plane is at least 5. Geocombinatorics, 28:5-18, 2018.
arxiv link.


https://www.cs.umd.edu/~gasarch/BLOGPAPERS/unitdist.pdf
https://arxiv.org/abs/1804.02385

	Introduction
	Connectivity: The n=1 Case
	Connectivity for GZn
	Connectivity for GQn
	For n{2,3,4}, GQn is not Connected
	For n5 GQn is Connected


