1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

A Muffin-Theorem Generator

Guangqi Cui'
Montgomery Blair High School
bestwillcui@gmail.com

John Dickerson?
Department of Computer Science and UMIACS, Univ of MD at College Park
john@cs.umd.edu

Naveen Durvasula?®
Montgomery Blair High School
140.naveen.d@gmail.com

William Gasarch?

Department of Computer Science, Univ of MD at College Park
gasarch@cs.umd.edu

Erik Metz®
Department of Mathematics, Univ of MD at College Park (ugrad)
emetz1618@Qgmail.com

Jacob Prinz
Department of Physics, Univ of MD at College Park (ugrad)
jacobeliasprinz@gmail.com

Naveen Raman’

Richard Montgomery High School
nav.j.raman@gmail.com

Daniel Smolyak®
Department of Computer Science (ugrad). Univ of MD at College Park
dsmolyak@gmail.com

Sung Hyun Yoo’
Bergen County Academies (a High School)
sunnyyoo812@gmail.com

© 0 N oA W N

© Guanggqgi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob Prinz,
37 Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo ;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stephano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 15; pp. 15:1-15:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:bestwillcui@gmail.com
mailto:john@cs.umd.edu
mailto:140.naveen.d@gmail.com
mailto:gasarch@cs.umd.edu
mailto:emetz1618@gmail.com
mailto:jacobeliasprinz@gmail.com
mailto:nav.j.raman@gmail.com
mailto:dsmolyak@gmail.com
mailto:sunnyyoo812@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

—— Abstract

Consider the following FUN problem. Given m, s you want to divide m muffins among s students
so that everyone gets 7 muffins; however, you want to maximize the minimum piece so that
nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal procedure.

We study the case where [27’"] = 3 because (1) many of our hardest open problems were of
this form until we found this method, (2) we have used the technique to generate muffin-theorems,
and (3) we conjecture this can be used to solve the general case. We give (1) an algorithm to
find an upper bound for f(m,s) when [QT’”] = 3 (and some ways to speed up that algorithm if
certain conjectures are true), (2) an algorithm that uses the information from (1) to try to find
a lower bound on f(m, s) (a procedure) which matches the upper bound, (3) an algorithm that
uses the information from (1) to generate muffin-theorems, and (4) an algorithm that we think

works well in practice to find f(m, s) for any m, s.

2012 ACM Subject Classification Mathematics of Computing — Combinatorial Optimization
Keywords and phrases Fair Division, Theorem Generation

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.15

Related Version https://arxiv.org/abs/1709.02452

Acknowledgements We thank Nancy Blachman who compiled the list of problems that intro-
duced us to this problem, Alan Frank who first came up with the problem. We would also like
to thank Alan Frank, James Propp, and Sam Zbarsky for stimulating discussions of the topic.

1 Introduction

Consider the following FUN problem. Given m,s you want to divide m muffins among s
students so that everyone gets * muffins; however, you want to maximize the minimum
piece so that nobody gets crumbs. Let f(m,s) be the size of the smallest piece in an optimal
procedure.

We give an example:
You have 47 muffins and 36 students. You want to divide the muffins evenly, but no student
wants a small piece. Find a protocol that mazimizes the smallest piece. We show in Section 5
that there is a procedure for this with smallest piece % and that this is optimal. Hence
f(47,36) = %.
Convention When discussing a muffin being cut we refer to pieces. When discussing a
student receiving we refer to shares. They are the same; however, it will be good to have
different terminologies to focus on what’s important. We treat a piece, a share, and its value
as the same thing. So we may say let © > % be given to a student.

» Definition 1. Let m,s € N. An (m, s)-protocol is a protocol to cut m muffins into pieces
and then distribute them to the s students so that each student gets = muffins. An (m, s)-
protocol is optimal if it has the largest smallest piece of any protocol. f(m,s) is the size of

the smallest piece in an optimal (m, s)-protocol.

Clearly, for all a € N, f(am,as) > f(m,s). All of our theorems indicate that f(am,as) =
f(m,s). We have not been able to prove this; however, we will only consider the cases where
m, s are relatively prime.

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.15

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

G. Cui et al.

We came upon this problem in a pamphlet Julia Robinson Mathematics Festival: A
Sample of Mathematical Puzzles compiled by Nancy Blachman. On Page 2 was The Muffin
Puzzle which asked about the problem for several particular cases. Nancy Blachman attributes
the problem to Alan Frank and points out that it was described by Jeremy Copeland [3]. We
are the first ones to consider this problem seriously for general m, s with one caveat: There
was some discussion of this problem in the math-fun email list in 2009. We have obtained a
copy of their arxives and discovered that they already had Theorem 3 and 11. We will credit
the individuals when we get to those theorems.

Given m, s how hard is it to compute f(m,s)? Computing f(m, s) can be rephrased as a
mixed integer program on O(ms) variables (the proof is in the Section A). Since the input is
of size O(log m+log s) this result does not even put the problem into NP. One of the upshots

of this paper will be a procedure that we conjecture puts the computation of f(m, s) into P.

We study the case where PT”W = 3 because (1) many of our hardest open problems

were of this form until we found this method, (2) we have used the technique to generate
muffin-theorems, (3) we conjecture this can be used to solve the general case.

We have a long paper [2] and some programs [1] for computing f(m,s). For 1 < s < 50,
1 < m < 60 we have computed f(m,s). In this paper we focus on a subset of the material
that lends itself to generating theorems about muffins via an algorithm.

2 Summary of Results

In Sections 3,4 we give basic theorems and definitions used throughout the paper. In Section 5
we illustrate the Buddy-Match techniques by proving f(47,36) < 3%. In Section 6 we illustrate

how to obtain lower bounds and present the result f(47,36) > 25

In Sections 7 we discuss how to generate theorems from the Buddy-Match Technique.

These theorems are of the form:

IfdeNand1<a<3d-—1, a,d relatively primes, then

dk + X
vk >1 dk d, 3dk < —
(VE>1)|f(3dk+a+4d,3 +a)*3dk+a

where X is a constant which can depend on a,d but not on k. In Section 8 we discuss how
to generate theorems that are more general. Here is an example:

If1<a< % and a # 23—d then f(3dk+a+d,3dk+a) < ;lg,;:i where X :max{%“,’%d}.

In Sections 10, 11 we show how, assuming certain conjectures, one can speed up the
Buddy-Match Technique. In Section 12 we give an algorithm that we conjecture puts f(m, s)
into P. In Section 13 we speculate about that algorithm and other muffin-issues.

In the appendix we state and sometimes prove theorems that are needed to fill in some of
the gaps in our narrative. We also give some examples of the theorems we generated.

3 Basic Theorems

In this section we prove two theorems that will enable us, for the rest of the paper, to only
consider m, s and protocols such that (1) m > s > 3, (2) s does not divide m, and (4) every
muffin is cut into exactly two pieces.

The following theorem takes care of the cases s =1 and s = 2. The proofs are easy and
left to the reader.

15:3

FUN 2018

15:4

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

» Theorem 2.
1. (vm)[f(m,1) =1]

2. (Vm)lm =0 (mod 2) — f(m,2) =1]
3. (Vm)[m=1 (mod 2) — f(m,2) = 1]
4. (Ym,s)[s divides m — f(m,s) =1].

The following theorem shows that if you know f(m, s) then you know f(s,m). Combined
with Theorem 2 we need only consider m > s > 3. This theorem was independently discovered
by Erich Friedman, within the math-fun email list, in 2009.

» Theorem 3. Let m,s € N. Then f(s,m) = = f(m,s).

Proof. Assume f(m,s) > a. We show f(s,m) > >a. Let My, ..., M,, be the muffins. Let
S1,...,Ss be the students. The protocol that achieves f(m,s) > a must be of the following
form:

1. For each 1 <4 < m divide M; into pieces (a;1, ai2, - - ., im,;) Where Z;’Zl a;; = 1.
2. For each 1 < j < s give S; the shares [by}, by;, ..., bs,;] where Y77 bj; = 2.
The following hold:
Uit U;”:H{aij} = U§:1 UiZi {0}
The min over all of the a;; is a.
The following protocol shows that f(s,m) > >a. Let Mj,..., M{ be the muffins. Let
1,..., 5., be the students.

1. For each 1 < j < s divide M]’ into (b1, >boj,..., >bs,;). Note that S 2bij =
b Sj S
%Ei]ﬂbij:%X%:l- . .
2. Foreach 1 <i < mgive S} [Zai1, 5 0ij, - - - ; 2 0im,]. Note that Z;”:l Za; == Z;n:l aij =
Sxl=2=.
m m

Clearly this is a correct protocol and the minimum piece is of size > a.
We now show that f(s,m) = = f(m,s). By the above we have both (1) f(s,m) >
= f(m,s), and (2) f(m,s) > = f(s,m). Hence

J(s.m) = - f(m.s) = 2 f(s,m) = f(s,m).

Therefore f(s,m) = = f(m,s). <

3w

» Theorem 4. Let m,s € N.

1. If f(m,s) > a and a > % via protocol P then protocol P cuts every muffin into 1 or 2
pieces.

2. f(m,s) > a and a < 1 via protocol P then there is a protocol P’ such that (1) P’ also
yields f(m,s) > «, and (2) P’ cuts every muffin into 2 or more pieces.

Proof. a) If any muffin is cut into > 3 pieces then there is a piece < % < a.

b) If any muffin is uncut and given to (say) Alice then we can add a step where we cut the
muffin into (%, %) and give both %—sized pieces to Alice. Since a < % adding in some pieces
of size % does not affect the smallest piece. <

By Theorem 4 we have the following convention.

Convention: When trying to show that f(m,s) < a where % <a< % we will assume, by
way of contradiction, that there is a protocol showing f(m,s) > « where every muffin is cut
into exactly 2 pieces.

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

G. Cui et al.

4 Basic Definitions

» Definition 5. Let m, s € N. Assume there is an (m, s)-protocol.
1. The two pieces that come from the same muffin are called buddies. B(x) is the buddy of
z. Note that B(zx) =1 — x.

2. A student that gets A shares is an A-student. A share given to an A-student is an A-share.

3. 2-Shares that are given to the same 2-student are matched. M(z) is the match of 2-share
x. Note that M(r) = = — x.

4. If z is a share given to a 3-student then Mg(x) is the smallest share (not including x)
that the student has, and M (x) is the largest. Note that Mg(x) < % Hence

B(Mg(x)) > 1 — mfs)=e

Notation: (a,b) will mean the set of shares that have size strictly between a and b. Hence
|(a,b)| will be the number of such shares. We use similar notation for [a, b].

5 An Example is Worth A Thousand Theorems: 43 muffins, 39
Students

The method we demonstrate in this section is called The Buddy-Match Method.

» Theorem 6. f(47,36) < % - %.

Proof. To make the notation easier we write all fractions as having denominator 360.

Assume there is an (47,36)-procedure. We show that there is a piece < 123, Note that

360
47 _ 470

36 — 360"

Case 1: Some student gets > 4 shares. Then some students has a share <
Case 2: Some student gets < 1 share. 1 < ‘3%, so this is impossible.

Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The

total number of shares is 94. Let s (s3) be the number of 2-students (3-students).

47 124
36x4 < 360 °

289 +3s3 = 94
So+s3= 36

So s9 = 14 and s3 = 22.

. i 234 470 _ 234 _ 236 _ 236 _ 124
Case 3.1: There is a 2-share v < 555. M(z) > 555 — 565 = 360 so B(M(x)) <1- 55 = 350

Case 3.2: There is a 3-share z > 222, B(Mg(z)) <1 — %% = i

360 360
) o 336 236 _ 124
Case 3.3: There is a 2-share x > 555. B(z) <1 — 555 = 355
Case 3.4: There is a 3-share z < %. This one is self-explanatory.
. _ in (124 222 _ in (234 236
Case 3.5: All 3-shares are in (555, 555) and all 2-shares are in (555, 555)-
The following picture captures what we know so far.
124 o 222 24 o 236
360 oshs 555 Noshs 55 2-shs 250
: 7222 234 , 222 2341y _ (126 138
Since there are no shares in [555, 5551, there are no shares in B([555, 555]) = (350 350

The following picture captures what we know so far.

(===) === I === [===] =--

124 126 138 222 234 236
360 SS-ShS 360 No shs 360 L3-shs 360 No shs 360 2-shs 360

~—

15:5

FUN 2018

15:6

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

S3-shs stands for short 3-shares and L3-shs stands for large 8-shares. There are 2so = 28
2-shares so there are 28 S3-shares (B is a bijection between 2-shares and S3-shares). Since

there are 3s3 = 66 3-shares total that leaves 38 S3 shares.

Since the midpoint of L3-shs is %, the Buddy function is a bijection from (%, %) to
(180 22

3607 365)> Hence these two intervals have the same number of shares.

235812rgc6e the midpoint of 2-shs is %, the Match function is a bijection from (%, ggg) t

(222, =22). Hence these two intervals have the same number of shares. Applying the Buddy

360 360
: - : 124 125 125 126
function to both these intervals we obtain that (355, 555) and (355, 555) have the same number

of shares.

In the scenarios above there are an even number of shares of size the midpoint. We
arbitrarily assign half to the left and half to the right.

We define the following intervals.

» Definition 7.
1. [= (E

=
[\
at

w
[«
o
=
o
DO

(1] = |I2|, |1y U I3| = 28)

w
D
o
=0
[e.]=2]
[e]en)

&
1
—~
‘H
w
V\‘/vv

2.
3.
4

Nw
N
NO

(T3] = |14, |13 U I4| = 38)

Henceforth all of the students considered will be 3-students. We now look at the students

in a more detailed way than 2-students and 3-students.

» Definition 8. Let 1 <4y <--- <43 <4. An e(iy,i9,43)-student is a student who has, for
each 1 < j <3, a share in I;;. For example, an e(1, 1,4)-students has two shares in /; and
one share in Iy.

Claim 1:
1. The only possible students are:
a. e(1,1,4)

0@ - 0O Q& 00 T
9]
SN N NN N TN TN
'l\D
ﬂl\D
e

. e
e(2,3,4
. e(3,3,3
i e(3,3,4
2. There are no shares in [202, 218
3. There are no shares in [%, %] (this follows from the prior part and buddying).

Proof of Claim 1:
1) We establish that some students are impossible.

A e(1,4,4)-student has more than 125 42 x 180 = 282

A €(2,2,3)-student has less than 2 x 320 4 180 — 232

The result follows from these two statements, though the proof is tedious.
2) We look at which I4-shares are used

A e(1,1,4) student uses Iy-share > 470 — 2 x 123 — 220
A e(1,2,4) student uses y-shares > 570 — 123 _ 126 — 219
A e(1,3,4) student uses y-shares < 500 — 124 _ 138 _ 208
A e(2,2,4) student uses Iy-shares > 310 — 2 x %‘: 28
A €(2,3,4) student uses Jy-shares < 579 — 125 — 138 — 207

238

239

240

241

242

243

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

G. Cui et al. 15:7

A e(3,3,4) student uses 4-shares < 470 — 2 x 38 — 194
Hence the only shares in I, that can be used are those < % or > gég The result follows.
End of Proof of Claim 1

We redefine the intervals.

» Definition 9.

L5 —<§éé,ﬁ>
2. I = (533, 350) (11| = |L2]), |11 U Iy| = 28)
3. . = (138 14 2)
3 360 360
4. I, = (L2 180
5. Is = (350» 505) (La] = |Is])
6. Ig = (3—8 3—2) (T3] = |Isl, [I3 U I4 U I5 U Ig| = 38)

By a proof similar to that of Claim 1 we obtain the following:
Claim 2:
1. The only possible students are: e(1,1,6), e(1,2,6), e(1,3,5), e(1,4,4), e(1,4,5), e(2,2,6),
€(2,3,5), e(2,4,4), e(2,4,5), e(3,3,5), e(3,4,4), and e(4,4,4).
194 202

2. There are no shares in [557, 555]

3. There are no shares in [%, %] (this follows from the prior part and buddying).

We define the following intervals.

» Definition 10.

1. Il = (%7 %)

2. Iy = (322, 228) (|Iy| = | Iz, |l U Io| = 28)

3. I3 = (%7 %)

4, I4 = (%7 %)

5. Iy = (338, 180)

6. Is = (350, 194) (|15 = |Is])

7. Iy = (32,5%8) (L] = |I7])

8. Is = (385,322 (IIs] = |Is], [IsU--- U Is| = 38)

By a proof similar to that of Claim 1 we obtain:
Claim 3: The only possible students are: e(1,1,8), e(1,2,8), e(1,3,7), e(1,4,6), e(1,5,5),
e(2,2,8), e(2,3,7), e(2,4,6), e(2,5,5), e(3,3,6), and e(4,4,4).

Let
1. |e(1,1,8)| =a
2. le(1,2,8)|=b
3. e(1,3,7)|=¢
4. |e(1,4,6)| = d
5. le(1,5,5)| =e
6. |e(2,2,8)| = f
7. 1e(2,3,7)| =g
8. |e(2,4,6)|=h
9. |e(2,5,5)] =1
10. |e(3,3,6)| =4
11. |e(4,4,4)| =k

FUN 2018

15:8

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Since |I1| = [I2], 2a +b+c+d+e=b+2f +g+h+i,s02a+c+d+e=2f+g+h+i

Since |I3| = |Ig], c+g+2j=a+b+ f

Since |Iy| = |I7|, d+ h+3k=c+yg

Since |I5| = |Ig|, 2e +2i=d+h+j

Since |1 UIy| =28,2a+2b+c+d+e+2f+g+h+i=28

Since there are 22 3-students, a+b+c+d+e+ f+g+h+i+ k=22

From the last two equations we obtain a +b+ f =6

We combine I; and I into a single interval. This reduces the system to 6 variables,
resulting in the equation

1 1 1 1 1 177p 22
2 1 1 1 0 0|]lqg 28
-1 1 0 0 2 o|l|rl=1]0
0 -1 1 0 0 3|]|s 0
0 0 -1 2 -1 0] [t 0

However, one can check that eliminating the bottom 3 rows requires the top 2 rows to be in
the ratio 7:9. 22:28 £ 7: 9, so there is no solution. |

The above proof used that [Qj’ﬂ = 3 since that is the condition that leads to having
2-shares and 3-shares. This is usually important since it gives us symmetry from matches, not
just from buddying; however, in this case we just so happened to not need that symmetry.

6 Finding a Procedure

We now describe the program that finds the procedure showing f(47,36) > %. We guess

that all shares are of the form ﬁ where 124 < z < 236. But we can cut down those variables
a lot based on the proof. For example, by modifying the proof slightly, we can deduce that
127 128 137
36073607 "7 360"
We can also use the symmetries of where shares can be.

For every way to split a muffin we have a variable for how many muffins are split that

. (124 2367 - : : 125 235y - . .
way, as follows: (557, 555) is associated to the variables y124,236, (555, 365) 1 associated with

the variable y;25 235, etc. This variable is the number of muffins that are split that way.

For every way to give muffin shares to a student we have a variable for how many students

get that set of shares, as follows: [%, %, %] is associated to the variable zg7,79 69, [%, %]

is associated to the variables 2115117, etc. This variable is the number of students who get
that share-size.

there are no share of size This is a key factor in speeding up the program.

For each size we express how many pieces are of that size in two ways.

The number of pieces of that size based on the muffins. For example, the number of

pieces of size 3% is y131,256. The number of pieces of size 350 is 2 X y150,150-

The number of shares of that size based on the students. For example, the number of

. 131
shares of size 350 18

2124,131,215 + * - + 2130,131,200 + 22131,131,208 + 2132,131,207 + - - + 2215,131,124

For each size we get an equation by equating the muffin-based and student-based ex-
pressions. We have more equations based on the number of pieces and the number in each
interval which falls out of the proof of the upper bound. This leads to a set of linear equations
whose solution leads to a procedure.

Here is the procedure for f(47,36) > 123 = LT we obtained with this method:

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

G. Cui et al.
1. Divide 1 muffin (3%, 2%)
2. Divide 2 muffins (% %)
3. Divide 2 muffins (% %)
4. Divide 2 muffins (% %)
5. Divide 6 muffins (% 178710)
6. Divide 6 muffins (%a %)
7. Divide 14 muffins (LT 63
8. Divide 14 muffins (%g %)
9. Give 2 students [%%%]
10. Give 2 students [%%%]
11. Give 2 students [W‘%%%]
12. Give 2 students [%%%]
13. Give 2 students [%%%]
14. Give 6 students [192 33, 53]
15. Give 6 students [%%%]
16. Give 14 students [—g %]

The reader should be able to see how to generalize the method outlined above.

What is described above is not quite what we have coded up (though we will). The
Interval Method (see Section B) is another method to find lower bounds that gives information
that can be used to cut down the time to find a procedure. We have coded up a version of
what is outlined above with the interval method.

We denote the algorithm given above (the one using Buddy-Match) VLOWER (m, s, «)
where one finds a procedure showing f(m, s) > «, hence verifying that f(m,s) > a.

7 The Proof that f(47,36) < 3i Reveals Much More

The proof that f(47,36) < S—(l) can be modified very slightly (just notation) to obtain the
following result (which we write in a strange way for later exposition):

11k + I]

k>1 11 x k+ 11 k —_—
(Vk >)[f(?)x x k+11+ 3,33 +3)*3><11><3k—|—3

More generally the following seems to be true empirically:
for all d (d stands for difference and is m—s), for all1 <a < 3d—1 (a,d relatively primes),
there exists X :

dk + X
>
(Vk_l)[f(Bdk—i—d—i—a 3dk +a) < 3dk+a}

For d = 1 to 8, for all relevant a, we have found X. In many concrete cases we have

shown that it is also an upper bound. In Section C we present the results for the d = 7 case.

Note that we need k > 1 since if k = 0 then we no longer have [22] = 3.

S

8 Generating More General Theorems

The techniques discussed in Section 7 generate theorems of the form

dk + X
3dk+a|

(Vk > 1)| f(3dk + a + d, 3dk + a) <

15:9

FUN 2018

15:10

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

However, the program can be modified to obtain more general theorems. As noted in
Section 7 our program finds interesting values of X. That is, the program may find that
(say) if X < I then there are no e(1,3,4)-students. What is it about X < I that makes this
happen? It may be that (say) 1 <a < 5—7d and a % makes this work, and it may be that
X = max{%a, ‘IT"'d)

We have taken the results from the program and, with the help of additional programs
and our own ingenuity generated many theorems (we hope to fully automate it soon). These
theorems are a great time saver since often the result we want falls out of them directly. We

present a sample of such theorems in the Section D.

9 How to find X

31
90
implies that a certain system of linear equations have a solution where all of the variables

The proof of Theorem 6 can be summarizes as follows: The assumption f(47,36) >

are natural numbers between 0 and s3 = 22. The system had no such solution, hence a
contradiction.

Imagine that we want an upper bound on f(47,36) but do not know what it is ahead of
time. Following the line of reasoning in Section 7 we seek X such that

11+ X
11 < .
f(334+3+11,33+3) < 3313

We use a program to simulate the proof of Theorem 6 but with X instead of the actual
numbers. This program will produce many values of X where something interesting happens,
such as a type of student no longer being allowed. The program looks at the (finite) set of
interesting values of X and finds the least one that causes the resulting system of linear
equations to be unsolvable using natural numbers between 0 and 22. Hence we have a value
of X. We then use VLOWER (47, 36, 113'2X) to find the matching lower bound (if this does
not work then the algorithm failed to find f(m, s)).

For the values 47, 36 it was easy to find the value of X. For larger m, s it may be that
verifying f(m, s) < « is faster than finding the a. In the next two sections we examine how
to speed up finding X.

We leave it to the reader to generalize the algorithm to any m, s where {QT’”W = 3; however,

we give the following picture which represents intervals where 3-shares can be. In the picture
each nonempty interval has the number of 3-shares in it (though y is not known) and a label
such as I; so we can refer to it. This picture is the result of many buddy-match sequences.

(a+d (I) | a+d (I2)) 0]
dk+X dk+3 dk+a—X dk+2X
3dk+a 3dk+a 3dk+a 3dk+a
(y (I3)) 0
dk+2X dk+a+d—3X dk+d—a+2X
3dk+a 3dk+a 3dk+a
(2d—a—y (L) | 2d —a—y (I5))
dbtd—at2X dk+ 244 dk+2a—2X
3dk+a 3dk+a 3dk+a
0 I(y (Is))
dk+2a—2X dk+3X dk+a+d—2X
3dk+a 3dk+a 3dk+a

Facts and Caveats:

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

G. Cui et al.
L L =[]
2. |L4| = |Is|

3. In the picture it is unclear if the endpoint of I is included in I;. We do not include
it; however, we take the even number of shares that are at that endpoint and arbitrary
assign half to I; and half to Is.

4. There is a similar comment for I, I, and I5.

We denote the version where you do not already have upper bound to check BUDMAT (m, s)
and the version where you do BUDMAT (m, s, «) where « is the bound. We will avoid using
BUDMAT (m, s) unless m, s are small since it may be slow.

10 How to find X Cheating a Little

Say you want to find f(213,200). Since [25233] = 3 you could run BUDMAT(213,200).

But the numbers are large! Following the line of reasoning in Section 7 we note that
d = 213 — 200 = 13 and generalize the problem to finding an X such that

13k + X

39k +5+4+13,39k +5) < ————.
J(39k +5 413, *)_39/€+5

Lets look at the k = 1 case: f(57,44). Since [2227] = 3 you could run BUDMAT(57, 44).

But the numbers are smalll Oh, thats a good thing! Lets say the answer is . Run
VLOWER(57, 44, a) to verify that its a lower bound. If it is then solve o = 34X to find

3945
X. The proof you did for f(57,44) < 13%1)5(can be modified to show (Vk > 1)[f(39%k + 5 +
13,39k + 5) < 4=, In particular £(213,200) < £X54X — 8. Run VLOWER (213, 300, 3)

to verify the lower bound (if this does not work then the algorithm failed to find f(57,44)).
This is cheating a little since we don’t really know that the such an X exists. But it has
so far. And we do verify in the end.

We leave it to the reader to generalize this procedure. We denote this algorithm
CHEATALITTLE(m, s).

11 How to find X Cheating a Lot

Say you want to find f(1717,1650). Since PT&?&W = 3 you could run BUDMAT(1717, 1650).
But the numbers are really large! Following the line of reasoning in Section 7 we note that

d = 1717 — 1650 = 67 and generalize the problem to finding an X such that

67k + X
F(201k +42 4 67,201k +42) < oo

Lets look at the k =1 case: f(310,243). These numbers are still big!

Lets look at the k = 0 case: f(109,42). These numbers are small! Since [22122] > 4 you
cannot run BUDMAT(109,42)). But the situation is worse than that. Even if we bound
£(109,42) the proof will not use BUDMAT and hence cannot be modified to get an upper
bound for f(201k + 42 4 67,201k + 42). In fact, the answer for f(109,42) should have no
bearing on our problem.

Except for one thing. Empirically it does. In all cases that we looked at the X obtained
from knowing an upper bound on the k& = 0 case of f(3dk + a + d, 3dk + a) was the correct
X for kK > 1. We proceed as if this is always true.

We cannot use BUDMAT(109,42); however, there are other techniques that to find
an upper bound on f(m,s). They summarized in Section B. Use them. Lets say the

15:11

FUN 2018

15:12

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

answer is . Run VLOWER(109,42, «) to verify that its a lower bound. If it is then solve
a = % to find X. The proof you did for f(109,42) < % cannot be modified to show

(VE > 1)[f(201k + 42 + 67,201k + 42) < %’fij;] But you have a very good conjecture.

Run BUDMAT(109, 42, 2%711):2). If it returns YES and a proof then modify the proof to

obtain (Vk > 1)[f(201k + 42 4+ 67,201k + 42) < ngiﬁ} (if this does not work then the

algorithm failed to find f(1717,1650)). In particular f(1717,1658) < ngf;fs = /. Run
VLOWER(1717,1658,) to verify the lower bound (if this does not work then the algorithm
failed to find f(1717,1650)).

This is cheating a lot since we don’t really know that the & = 0 case has any bearing on
the k > 1 case. But it has so far, and we verify in the end.

We leave it to the reader to generalize this procedure. We denote this algorithm

CHEATALOT(m, s).

12 A General Algorithm

We present an algorithm that we conjecture always finds f(m, s) and operates in polynomial
time.

The reader should read Section B since we will be using FC, INT, and BUD which are
explained there. They are other methods to find or verify upper bounds on f(m, s).

1. Input(m,s).

2. If m = s output 1. If ged(m,s) = d > 1 then call the algorithm recursively with
flm/d,s/d). If s =2 then output % If m < s then call the algorithm recursively to find
f(s,m) and output = f(s,m).

3. Compute a = FC(m,s). Compute VLOWER(m, s,) to see if « is a matching lower
bound. If it is then output « and stop.

4. Compute a = INT(m, s). Compute VLOWER(m, s, @) to see if « is a matching lower
bound. If it is then output « and stop.

5. If [%’ﬂ = 3 then:

a. Compute « = CHEATALOT(m,s). Compute VLOWER(m,s,«) to see if a is a
matching lower bound. If it is then output « and stop. (This might fail if the methods
of Section B do not work on the input they are given.)

b. Compute o« = CHEATALITTLE(m, s). Compute VLOWER (m, s, a) to see if a is a
matching lower bound. If it is then output o and stop.

6. If [22] > 4 thenlet a = s and d = m—a. We seek f(3d x0+a+d,3dx 0+a). Recursively
call f(3d+ a+d,3d+ a) (we could tell it to not bother with CHEATALOT(m, s) since
that just asks to compute f(a + d,a) using FC and INT). If the computation succeeds
and returns « then run BUD(m, s, «) to verify that f(m,s) < «. If this is verified then
compute VLOWER(m, s,) to see if « is a matching lower bound. If it is then output «
and stop.

7. If nothing above works then output FAILED!

This can be sped up by, upon first seeing m, s, see if any of the general theorems such as
those in Sections C and D apply to get an upper bound « and then run VLOWER(m, s, a).

13 Open Problems and Speculation

We would like to think that the algorithm in the last section will always work and hence
computing f(m,s) is in P. But we’ve been down this road before where we think we can

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

G. Cui et al.

compute all f(m,s) only to come to a troublesome case which leads to a new technique
and more co-authors. The following are possible outcomes: (1) we prove that the algorithm
always works, (2) we keep running the algorithm and it always works but when the numbers
get too big we can’t tell, (3) we come across a value the algorithm does not work on and this
leads to a a new technique and more co-authors.

We believe that computing f(m, s) is in P. One piece of evidence for this is that for all s,
for all m > s3, f(m, s) = FC(m, s). Hence if you fix s then for large enough s the problem is
very easy. One might call this Fixed Parameter very tractable.

m

We believe that f(m, s) only depends on "*. This seems provable.

A A Mixed Integer Program for f(m,s)

The following theorem shows that f(m, s) always exists (as opposed to having better and
better algorithms), is rational, and is computable. This theorem was independently discovered
by Veit Elser, within the math-fun email list, in 2009.

» Theorem 11. Let m,s > 1.

1. There is a mized integer program with O(ms) binary variables, O(ms) real variables,
O(ms) constraints, and all coefficients integers of absolute value < max{m, s} such that,
from the solution, one can extract f(m,s) and a protocol that achieves this bound. This
MIP can easily be obtained given m,s.

2. f(m,s) is always rational. This follows from part 1.

3. In every optimal protocol for m muffins and s students all of the pieces are of rational
size. This follows from part 1.

4. The problem of, given m,s, determine f(m,s), is decidable. This follows from part 1.

Proof. Counsider the following (failed) attempt to solve the problem using linear programming.

1. The variables are x;; where 1 < ¢ < m and 1 < j < s. The intent is that z;; is the
fraction of muffin ¢ that student j gets.

2. Forall1<i<m,1<j5<s,0<2; <1

3. Foreach 1 <i < m, Z;Zl z;; = 1.

This says that the amount of muffin ¢ that student 1 gets, students 2 gets, ..., student s
gets all adds up to 1.

4. Foreach 1 <j <s, Y " x5 = 2.
This says that the amount that student j gets from muffin 1, muffin 2, ..., muffin m all
adds up to 2.

5. Forall1<i<m,1<j<s, 245 > 2.

6. Maximize z.

This does not work. The problem is that (say) x13 could be 0. In fact it is likely that
some x;; is 0. This makes z = 0. What we really want is
Tij # 0 = Tij >z

It is easy to show that f(m,s) > % Hence every nonzero x;; is > % We will use this in
our proof.
For 1 <i<m, 1< j < s modify the linear program above as follows.

1. Add variable y;; which is in {0, 1}.
2. Add the constraint x;; + y;; < 1. Note that

15:13

FUN 2018

15:14

497
498
499
500
501
502

503

504
505
506

507

508

509
510

511

512
513
514
515

516

517

518

519

520

521
522
523
524
525
526
527
528
529
530

531

25 =0 = x;; +y;; < 1, so the constraint imposes no condition on ¥;;.
ZTij >0 = Yij <l = yij:() = Xij + Yij = T4j-
3. Add the constraint x;; + y;; > % Note that
.%‘ijzo — yiJZ% — yijzl — .’L'Z‘j—‘y-yij:l
Ti; >0 = x5 > % (since we know all non-zero pieces are > %) = Ty +Yij = %,
so the constraint imposes no condition on y;;.
4. Replace the constraint z < x;; with 2z < x5 + 5.

If z;; = 0 then the constraint
2 <@+ yi; =1
is always met and hence is (as it should be) irrelevant. If z;; > 0 then the constraint
2 < Tij + Yij = Tij

is the constraint we want.
Solve the resulting mixed integer program. Since all of the coefficients are rational the
answer will be rational.
<

B Other Methods

We discuss three methods for finding an upper bound on f(m, s).
The method from the following theorem is called The Floor Ceiling Method or just
FC-method. Note that it is very fast and gives you the upper bound.

» Theorem 12. Assume that m,s € N and > ¢ N.

o) < mas{ gomind (=

Proof. Assume we have an optimal (m,s) protocol. Since ™ ¢ N we can assume every

muffin is cut into at least 2 pieces.

Case 1: Some muffin is cut into u > 3 pieces. Then some piece is < %

Case 2: All muffins are cut into 2 pieces. Since there are 2m shares and s students both of
the following happen:

Some student gets ¢ > [2m/s] shares, so some share is < Tam7eT-
Some student gets ¢ < [2m/s] shares, so some share x is > Tom7e]- B(z)) <1-— el

Putting together Cases 1 and 2 yields the theorem.

We denote the function from Theorem 12 FC(m, s).

The other two methods are to long to describe fully here so we just sketch.

The Interval Method is a primitive version of the Buddy-Match method where we do not
use symmetry and (since we have shares other than 2-shares and 3-shares) cannot use the
Match in Buddy-Match. This method is fast and can be used to derive the answer. We
denote the result INT(m, s).

The Buddy Method is like the Buddy-Match Method only we do not use the Match part
since we have shares other than 2-shares and 3-shares. And like the Buddy-Match Method
this one is faster if you already have the answer. We denote the version where you do not
already an upper bound to check BUD(m, s) and the version where you do BUD(m, s, «)
where « is the bound.

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

G. Cui et al.

C Everything You Ever Wanted to Know About f(s+7,5s)

By either cheating a little (Section 10) or cheating a lot (Section 11) we have obtained

formulas for f(3dk+a+d,3dk+a) for 1 <d <50 and 1 <a < 3d—1 (a,d relatively primes).

We present the results for d = 7. Note that for most of the formulas the formula which is
supposed to only hold for & > 1 also holds for k = 0 (with a different proof).

» Theorem 13.
Loa. f(8,1)=1. Forallk>1, f(21k+8,21k + 1) < ZEEX where X = 3.
b. For allk >0, f(21k+ 9,21k +2) < ;f,j_ig where X = 1.
2. For allk >0, f(21k 410,21k 4 3) < J5EX where X = 3.
3. Forallk >0, f(21k 411,21k 4+ 4) = 7555 where X = £.
4. For allk >0, f(21k + 12,21k +5) < ;f,j_ig where X = 2.
5. For allk >0, f(21k 413,21k 4 6) < 755 where X = 42,
6. For all k>0, f(21k + 15,21k + 8) < & where X = 3.
7. For allk >0, f(21k 416,21k 4+ 9) < J5E5 where X = 4L
8. For allk >0, f(21k 417,21k 4 10) < 57455 where X = 4.
9. For all k>0 f(21k + 18,21k + 11) < 555 where X = 3.
10. For all k >0 f(21k 419,21k 4+ 12) < 25455 where X = 12
11. For all k>0 f(21k + 20,21k + 13) < 55 where X = 5.
12. For allk > 0: f(21k + 22,21k + 15) = 1,
13. For allk > 0: f(21k + 23,21k + 16) = 1,
14. For allk > 0: f(21k + 24,21k +17) = 1,
15. For allk > 0: f(21k + 25,21k + 18) = 1,
16. For allk > 0: f(21k + 26,21k + 19) = 1,
17. For all k > 0: f(21k + 27,21k + 20) = 1.

Note that the last few answers were g and there is an equality. The % follows from

Theorem 14. The equality holds since we have proven that, for all m > s, f(m,s) > 1.

D A Sample of General Theorems

In all cases a,d are relatively prime.

» Theorem 14. Ifa € {2d+ 1,...,3d — 1} then f(3dk + a + d,3dk + a) < gggfl where
X =2 s0 f(3dk+a+d3dk+a) <%

» Theorem 15. Ifa € {1,...,3d — 1}, a # d, then f(3dk + a + d,3dk + a) < X yhere

3dk+a
X = max{g’a+d,2a d}

» Theorem 16. If1 < a < 3d — 1 and 5a # 7d then f(3dk + a + d,3dk + a) < LEX yhere

3dk+a
X = max{g, a+d7 a+2d 3a— 2d}

> Theorem 17. If 1 <a < % and a # % then f(3dk + a+ d,3dk + a) < 55X where
X = max{% Za “+d}

> Theorem 18. If 3¢ < a < d—1 then f(3dk + a+ d,3dk + a) < L2 where
X = max{ 2a 3“ d .

» Theorem 19. If 34 << ﬁgd and a # 2d then f(3dk + a + d,3dk + a) < Akt X here

3dk+a
5a—d a+d 3a
X = max{>%%, ¢1& =2

15:15

FUN 2018

15:16

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

6

2

6

6

2

7

E Ifm>sthen f(m,s) >1/3

Before showing the general technique we give an example.
Example: f(19,17) > 1.

We express % as ‘5’—{ since other fractions will have a denominator of 51.
We initially divide the 19 muffins (3, %,%). There are now 57 pieces i-shares. We
initially give 11 students 3 %—shares and 6 students 4 %—shares. (In the proof below W = 3,

sw = s3 =11, and swy1 = s4 = 6.) A student who gets 3 (4) shares is called a 3-student
(4-student).
We describe a process whereby students give pieces of muffins, called gifts, to other

students so that, in the end, all students have % Each gift leads to a change in how the
muffins are cut in the first place; however, there will never be a muffin of size < %
Each 4-student has % = g—? and hence has to give (perhaps in several increments)
% — % = é—} to get down to % Realize that if a 4-student gives é—} to a 3-student, then
the 3-student now has g—} + % = % > %
51 .2 57T _ 51 _ 6 57
Each 3-student has 27 and hence has to receive 27 — 27 = £} to get up to 27.

Call the 11 3-students g1,...,911.

Call the 6 4-students f1,..., fs.

We use a notation that we just give an example of:

f1 gives x to g1 by taking two %—pieces, combining them, cutting off a piece of size x,
giving it to g1 while keeping the rest. g1 takes the piece given to him and combines it with a
% piece. Notice that in terms of pieces we are taking three pieces of size % (2 from f1 and 1
from ¢1) and turning them into 1 piece of size % — x and one of size % + x. Hence we can
easily rearrange how the muffins are cut.

z(f1 — g1)

We need to make sure this procedure never results in a piece that is < % In the above
example (1) f; now has a piece of size % — x, hence we need z < %, (2) g1 now has a piece of
size % + x, which is clearly > % Hence the only restriction is z < %

1. 5(fi = g1). Now f has 57. YEAH. However, g; has 2.
2. Z(g1 — g2)- Now gy has 2 — 2 = 5T YEAH. However, g; has 31 + & = 5.
3. L(f2 = g2). Now g has 2I. YEAH. However, f, has 7.
4. 19(f2 — g3). Now f, has 2I. YEAH. However, g3 has .
5. %(gg — g4). Now g3 has % YEAH. However, g4 has %
6. 52—1(f3 — g4). Now g4 has % YEAH. However, f3 has %.
7. % (f3s = g5). Now f5 has 27. YEAH. However, g5 has 9.
8. ;’7(95 — g¢). Now g5 has % YEAH. However, gs has %.
9. 2(fs — g6). Now g6 has 2I. YEAH. However, f; has &,
10. E%(ﬁ; — g7). Now fy has % YEAH. However, g7 has %.
11. 2(g7 — gs). Now g7 has 2I. YEAH. However, gs has 2.
12. A (fs — gs). Now gg has 27, YEAH. However, f5 has &1.
13. %(f5 — gg). Now f5 has % YEAH. However, g9 has %.
14. %(gg — g10). Now gg has %. YEAH. However, g19 has %
15. %(f(s — g10)- Now g1 has % YEAH. However, fs has %.
16. 2 (fs — g11). Now fs has 52 YEAH. However, g1 has 27. OH. thats a good thing!

YEAH- we are done.
Note that the first was 4 <
in the final protocol are > .

End of Example

and the remaining = were all < 1 <

= Hence all pieces

1 1
3 3

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635
636

637

638

639

640

641

642

643

644

645

646

G. Cui et al.

» Theorem 20. For allm > s, f(m,s) > i.

Proof. Divide all the muffins into (%, %, %) Initially distribute them as evenly as possible
among the students. There will be a number W such that some students get W shares and
some get (W + 1)-shares. Let sy (sw41) be the number of students who get W (W + 1)
shares.

We do not need the following but are noting it anyway. If s does not divide 3m then
W = 377” and sy, swy1 are unique and determined by:

Wsw + (W + 1)swy1 =3m
sw+Sw41 =S

(Technically, if s | 3m there are two possible values of W.)

A student who gets W (W + 1) shares we call a W-student ((W + 1)-student). All
W-students get % All (W + 1)-students get %

A W-student must get < “*: if a W-student got > ** then all students would get > =
and hence there would be > s = m muffins total. A (W + 1)-student must get > = if
a (W + 1)-student got < 2 then all students would get < ™ and hence there would be
< s = m muffins total.

Hence we have:

@_KSE (1)
s 3 3

Wel mel 2)
3 s 3

Now we will need to smooth out the distribution so that everyone receives =*. We will do
this by doing a sequence of moves of the form x(f; — g;) or x(g; = g;). as defined in the
example.

We will assume sy 41 and sy are relatively prime (this only comes up in Claim 3 below).

This is fine because if they have a common factor d, we can just use the procedure for the

WAL SW cage repeated d times.

d ° d
Claim 1:
1. IfSW+1<Swthen%—%>%—%_
2. IfSW<8w+1then%—%>%—g_
Proof of Claim 1:
S X +1+S Xl—m
W41 3 w 3 =
m W+1 m m W m
Sw1 X | — + —— | +sw|l—+—F—— | =m.
s 3 s s 3 s

SWt1+Sw | — + Sw+1 ——) +sw|l———)=m
s 3 S 3 s

m W+1 m W m
sx?—&—swﬂ 3 +swl|l—5—— | =m

W+1 m sw <m W)

3 s SW4+1 \ S 3

15:17

FUN 2018

15:18

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

Both parts follow.
End of Proof of Claim 1
We give the procedure to obtain f(m,s) < % There are two cases.
Case 1: syy1 < sy. Hence by Claim 1 % - > %
Call the sy W-students g1, ..., gsy -
Call the sy 41 (W + 1)-students f1,..., fou ;-

1. Let x = % — . Note that z < % Do z(f1 — g1). Now f1 has . YEAH. However,

g1 has % + W3+1 — @ > 2. (This is where we use sy 41 < sw, or more accurately the

consequence of that from Claim 1.)
2. Let x = QWT'H —22. Do z(g91 — g2). Now g1 has . YEAH.

m

3. If g2 has > " then gy gives enough to g3 so that go has . Keep up this chain of

g1, 92, g3, - . . until there is a g; such that g; end up with < % (though more than the %
that g; had originally).

4. Do z(f — g;) where z is such that g; will now have 2.

5. Do x(f2 —+ gi41) where x is such that f will now have . Repeat the same chain of g;’s
as in step 3.

6. Repeat the above steps until you are done.

We need to show that (1) there is never a piece of size < %, and (2) the process ends with
every student getting .
Claim 2: The first gift is < % and no gift is larger.
Proof of Claim 2: Let C = % — ™ which is the size of the first gift. By equation (2)
Cc<i.
Assume that all gifts so far have been < C. We analyze the three kinds of gifts and show
that in all cases the gift is < C.
x(f; — g;) where (1) initially f; has > =, g; has < 7, and (2) after the gift f; has .
When this occurs it is f;’s first or second gift giving. (This happens in steps 1 and 5
above, and later as well.) Before the gift f; has at least % but at most %7 so this gift
has size at most % -2 =C.
x(g; — giy1) where (1) initially g; has > ™, g; has < ™, and (2) after the gift g; has
™. When this occurs g; has received a gift once and this is g;’s first time giving. (This
happens in steps 2 and in the chain referred to in step 5.) Since g; just received a gift of
size < C she has < %—i—C. Hence the gift is < %—%+C§ C.
x(f; — g;) where (1) initially f; has > ™, g; has < ™, and (2) after the gift g; has .
This will be f;’s first time giving. (This happens in step 4 above.) Before the gift f; has

at least % but at most “*, so this gift has size at most =* — % < C (by Claim 1).

Claim 3: If sy and sy 41 are relatively prime then the process terminates with all
students having “*.
Proof of Claim 3:

In each step all of the f; have at least . In each step the number of students who have
the correct amount of muffin goes up. One may be worried that at some point we will try to
do step 4 (for example) of the procedure and there will be no g; left who need more muffin.
But this is not possible because until the process terminates the f’s always have more muffin
than they need, so there is always a g with insufficient muffin.

One may also be worried that eventually we will get all of the f’s to have ¥, but the g’s
will not all have “*. This is not possible either, because whenever we only make gifts from f

to g when there is no g with more than “*.

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

G. Cui et al.

Finally, if sy and sy 41 are not relatively prime, it is possible that the procedure will
terminate early because in step 5 the size of the donation z is 0. If this occurred it would
mean that there is some subset of F' f’s and G g’s each of which having exactly **, who only
made donations amongst themselves. But then g = Wil
End of Proof of Claim 3
Case 2: sy < sy41. This is similar to Case 1 except that instead of f; giving g1 so that f;

has ¥, fi gives to g1 so that g; has *. Hence we have a chain of f;’s instead of a chain of

a contradiction.

sw

gi’s. <

—— References

1 Guangiqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob
Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo. Code for muffin problems,
2017. https://github. com/jeprinz/MuffinProblem.

2 Guangiqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob

Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo. The muffin problem, 2017.

https://arxiv.org/abs/1709.02452.
3 Alan Frank. The muffin problem, 2013. Described to Jeremy Copeland and in the New
York Times Numberplay Online Blog wordplay.blogs.nytimes.com/2013/08/19/cake.

15:19

FUN 2018

https://github.com/jeprinz/MuffinProblem
https://arxiv.org/abs/1709.02452
wordplay.blogs.nytimes.com/2013/08/19/cake

	Introduction
	Summary of Results
	Basic Theorems
	Basic Definitions
	An Example is Worth A Thousand Theorems: 43 muffins, 39 Students
	Finding a Procedure
	The Proof that f(47,36)3190 Reveals Much More
	Generating More General Theorems
	How to find X
	How to find X Cheating a Little
	How to find X Cheating a Lot
	A General Algorithm
	Open Problems and Speculation
	A Mixed Integer Program for f(m,s)
	Other Methods
	Everything You Ever Wanted to Know About f(s+7,s)
	A Sample of General Theorems
	If ms then f(m,s) 1/3

