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Abstract38

Consider the following FUN problem. Given m, s you want to divide m muffins among s students39

so that everyone gets m
s muffins; however, you want to maximize the minimum piece so that40

nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal procedure.41

We study the case where
⌈ 2m

s

⌉
= 3 because (1) many of our hardest open problems were of42

this form until we found this method, (2) we have used the technique to generate muffin-theorems,43

and (3) we conjecture this can be used to solve the general case. We give (1) an algorithm to44

find an upper bound for f(m, s) when
⌈ 2m

s

⌉
= 3 (and some ways to speed up that algorithm if45

certain conjectures are true), (2) an algorithm that uses the information from (1) to try to find46

a lower bound on f(m, s) (a procedure) which matches the upper bound, (3) an algorithm that47

uses the information from (1) to generate muffin-theorems, and (4) an algorithm that we think48

works well in practice to find f(m, s) for any m, s.49
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1 Introduction57

Consider the following FUN problem. Given m, s you want to divide m muffins among s58

students so that everyone gets m
s muffins; however, you want to maximize the minimum59

piece so that nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal60

procedure.61

We give an example:62

You have 47 muffins and 36 students. You want to divide the muffins evenly, but no student63

wants a small piece. Find a protocol that maximizes the smallest piece. We show in Section 564

that there is a procedure for this with smallest piece 31
90 and that this is optimal. Hence65

f(47, 36) = 31
90 .66

Convention When discussing a muffin being cut we refer to pieces. When discussing a67

student receiving we refer to shares. They are the same; however, it will be good to have68

different terminologies to focus on what’s important. We treat a piece, a share, and its value69

as the same thing. So we may say let x ≥ 1
3 be given to a student.70

I Definition 1. Let m, s ∈ N. An (m, s)-protocol is a protocol to cut m muffins into pieces71

and then distribute them to the s students so that each student gets m
s muffins. An (m, s)-72

protocol is optimal if it has the largest smallest piece of any protocol. f(m, s) is the size of73

the smallest piece in an optimal (m, s)-protocol.74

Clearly, for all a ∈ N, f(am, as) ≥ f(m, s). All of our theorems indicate that f(am, as) =75

f(m, s). We have not been able to prove this; however, we will only consider the cases where76

m, s are relatively prime.77

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.15
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We came upon this problem in a pamphlet Julia Robinson Mathematics Festival: A78

Sample of Mathematical Puzzles compiled by Nancy Blachman. On Page 2 was The Muffin79

Puzzle which asked about the problem for several particular cases. Nancy Blachman attributes80

the problem to Alan Frank and points out that it was described by Jeremy Copeland [3]. We81

are the first ones to consider this problem seriously for general m, s with one caveat: There82

was some discussion of this problem in the math-fun email list in 2009. We have obtained a83

copy of their arxives and discovered that they already had Theorem 3 and 11. We will credit84

the individuals when we get to those theorems.85

Given m, s how hard is it to compute f(m, s)? Computing f(m, s) can be rephrased as a86

mixed integer program on O(ms) variables (the proof is in the Section A). Since the input is87

of size O(logm+ log s) this result does not even put the problem into NP. One of the upshots88

of this paper will be a procedure that we conjecture puts the computation of f(m, s) into P.89

We study the case where
⌈ 2m

s

⌉
= 3 because (1) many of our hardest open problems90

were of this form until we found this method, (2) we have used the technique to generate91

muffin-theorems, (3) we conjecture this can be used to solve the general case.92

We have a long paper [2] and some programs [1] for computing f(m, s). For 1 ≤ s ≤ 50,93

1 ≤ m ≤ 60 we have computed f(m, s). In this paper we focus on a subset of the material94

that lends itself to generating theorems about muffins via an algorithm.95

2 Summary of Results96

In Sections 3,4 we give basic theorems and definitions used throughout the paper. In Section 597

we illustrate the Buddy-Match techniques by proving f(47, 36) ≤ 31
90 . In Section 6 we illustrate98

how to obtain lower bounds and present the result f(47, 36) ≥ 31
90 .99

In Sections 7 we discuss how to generate theorems from the Buddy-Match Technique.100

These theorems are of the form:101

If d ∈ N and 1 ≤ a ≤ 3d− 1, a, d relatively primes, then

(∀k ≥ 1)
[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
102

where X is a constant which can depend on a, d but not on k. In Section 8 we discuss how103

to generate theorems that are more general. Here is an example:104

If 1 ≤ a ≤ 5d
7 and a 6= 2d

3 then f(3dk+a+d, 3dk+a) ≤ dk+X
3dk+a where X = max{ 2a

5 ,
a+d

6 }.105

In Sections 10, 11 we show how, assuming certain conjectures, one can speed up the106

Buddy-Match Technique. In Section 12 we give an algorithm that we conjecture puts f(m, s)107

into P. In Section 13 we speculate about that algorithm and other muffin-issues.108

In the appendix we state and sometimes prove theorems that are needed to fill in some of109

the gaps in our narrative. We also give some examples of the theorems we generated.110

3 Basic Theorems111

In this section we prove two theorems that will enable us, for the rest of the paper, to only112

consider m, s and protocols such that (1) m > s ≥ 3, (2) s does not divide m, and (4) every113

muffin is cut into exactly two pieces.114

The following theorem takes care of the cases s = 1 and s = 2. The proofs are easy and115

left to the reader.116

FUN 2018
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I Theorem 2.117

1. (∀m)[f(m, 1) = 1]118

2. (∀m)[m ≡ 0 (mod 2)→ f(m, 2) = 1]119

3. (∀m)[m ≡ 1 (mod 2)→ f(m, 2) = 1
2 ]120

4. (∀m, s)[s divides m→ f(m, s) = 1].121

The following theorem shows that if you know f(m, s) then you know f(s,m). Combined122

with Theorem 2 we need only considerm > s ≥ 3. This theorem was independently discovered123

by Erich Friedman, within the math-fun email list, in 2009.124

I Theorem 3. Let m, s ∈ N. Then f(s,m) = s
mf(m, s).125

Proof. Assume f(m, s) ≥ α. We show f(s,m) ≥ s
mα. Let M1, . . . ,Mm be the muffins. Let126

S1, . . . , Ss be the students. The protocol that achieves f(m, s) ≥ α must be of the following127

form:128

1. For each 1 ≤ i ≤ m divide Mi into pieces (ai1, ai2, . . . , aimi
) where

∑mi

j=1 aij = 1.129

2. For each 1 ≤ j ≤ s give Sj the shares [b1j , b2j , . . . , bsjj ] where
∑sj

i=1 bij = m
s .130

The following hold:131 ⋃m
i=1
⋃mi

j=1{aij} =
⋃s

j=1
⋃sj

i=1{bij}132

The min over all of the aij is α.133

The following protocol shows that f(s,m) ≥ s
mα. Let M ′1, . . . ,M ′s be the muffins. Let134

S′1, . . . , S
′
m be the students.135

1. For each 1 ≤ j ≤ s divide M ′j into ( s
mb1j ,

s
mb2j , . . . ,

s
mbsjj). Note that

∑sj

i=1
s
mbij =136

s
m

∑sj

i=1 bij = s
m ×

m
s = 1.137

2. For each 1 ≤ i ≤ m give S′j [ s
mai1,

s
maij , . . . ,

s
maimi

]. Note that
∑mi

j=1
s
maij = s

m

∑mi

j=1 aij =138

s
m × 1 = s

m .139

Clearly this is a correct protocol and the minimum piece is of size s
mα.140

We now show that f(s,m) = s
mf(m, s). By the above we have both (1) f(s,m) ≥141

s
mf(m, s), and (2) f(m, s) ≥ m

s f(s,m). Hence142

f(s,m) ≥ s

m
f(m, s) ≥ s

m

m

s
f(s,m) = f(s,m).

Therefore f(s,m) = s
mf(m, s). J143

I Theorem 4. Let m, s ∈ N.144

1. If f(m, s) ≥ α and α > 1
3 via protocol P then protocol P cuts every muffin into 1 or 2145

pieces.146

2. f(m, s) ≥ α and α ≤ 1
2 via protocol P then there is a protocol P’ such that (1) P’ also147

yields f(m, s) ≥ α, and (2) P’ cuts every muffin into 2 or more pieces.148

Proof. a) If any muffin is cut into ≥ 3 pieces then there is a piece ≤ 1
3 < α.149

b) If any muffin is uncut and given to (say) Alice then we can add a step where we cut the150

muffin into ( 1
2 ,

1
2 ) and give both 1

2 -sized pieces to Alice. Since α ≤ 1
2 adding in some pieces151

of size 1
2 does not affect the smallest piece. J152

By Theorem 4 we have the following convention.153

Convention: When trying to show that f(m, s) ≤ α where 1
3 < α < 1

2 we will assume, by154

way of contradiction, that there is a protocol showing f(m, s) > α where every muffin is cut155

into exactly 2 pieces.156
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4 Basic Definitions157

I Definition 5. Let m, s ∈ N. Assume there is an (m, s)-protocol.158

1. The two pieces that come from the same muffin are called buddies. B(x) is the buddy of159

x. Note that B(x) = 1− x.160

2. A student that gets A shares is an A-student. A share given to an A-student is an A-share.161

3. 2-Shares that are given to the same 2-student are matched. M(x) is the match of 2-share162

x. Note that M(x) = m
s − x.163

4. If x is a share given to a 3-student then MS(x) is the smallest share (not including x)164

that the student has, and ML(x) is the largest. Note that MS(x) ≤ (m/s)−x
2 . Hence165

B(MS(x)) ≥ 1− (m/s)−x
2 .166

Notation: (a, b) will mean the set of shares that have size strictly between a and b. Hence167

|(a, b)| will be the number of such shares. We use similar notation for [a, b].168

5 An Example is Worth A Thousand Theorems: 43 muffins, 39169

Students170

The method we demonstrate in this section is called The Buddy-Match Method.171

I Theorem 6. f(47, 36) ≤ 31
90 = 124

360 .172

Proof. To make the notation easier we write all fractions as having denominator 360.173

Assume there is an (47, 36)-procedure. We show that there is a piece ≤ 124
360 . Note that174

47
36 = 470

360 .175

Case 1: Some student gets ≥ 4 shares. Then some students has a share ≤ 47
36×4 <

124
360 .176

Case 2: Some student gets ≤ 1 share. 1 < 47
36 , so this is impossible.177

Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The178

total number of shares is 94. Let s2 (s3) be the number of 2-students (3-students).179

2s2 + 3s3 = 94
s2 + s3 = 36180

So s2 = 14 and s3 = 22.181

Case 3.1: There is a 2-share x ≤ 234
360 . M(x) ≥ 470

360 −
234
360 = 236

360 so B(M(x)) ≤ 1− 236
360 = 124

360182

Case 3.2: There is a 3-share x ≥ 222
360 . B(MS(x)) ≤ 1−

470
360−

222
360

2 = 124
360 .183

Case 3.3: There is a 2-share x ≥ 236
360 . B(x) ≤ 1− 236

360 = 124
360184

Case 3.4: There is a 3-share x ≤ 124
360 . This one is self-explanatory.185

Case 3.5: All 3-shares are in ( 124
360 ,

222
360 ) and all 2-shares are in ( 234

360 ,
236
360 ).186

The following picture captures what we know so far.187

( −−− )[ −−− ]( −−− )
124
360 3-shs 222

360 No shs 234
360 2-shs 236

360
188

Since there are no shares in [ 222
360 ,

234
360 ], there are no shares in B([ 222

360 ,
234
360 ]) = [ 126

360 ,
138
360 ]189

The following picture captures what we know so far.190

( −−− )[ −−− ]( −−− )[ −−− ]( −−− )
124
360 S3-shs 126

360 No shs 138
360 L3-shs 222

360 No shs 234
360 2-shs 236

360
191

FUN 2018
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S3-shs stands for short 3-shares and L3-shs stands for large 3-shares. There are 2s2 = 28192

2-shares so there are 28 S3-shares (B is a bijection between 2-shares and S3-shares). Since193

there are 3s3 = 66 3-shares total that leaves 38 S3 shares.194

Since the midpoint of L3-shs is 360
2 , the Buddy function is a bijection from ( 138

360 ,
180
360 ) to195

( 180
360 ,

222
360 ), Hence these two intervals have the same number of shares.196

Since the midpoint of 2-shs is 470
2 , the Match function is a bijection from ( 234

360 ,
235
360 ) to197

( 235
360 ,

236
360 ). Hence these two intervals have the same number of shares. Applying the Buddy198

function to both these intervals we obtain that ( 124
360 ,

125
360 ) and ( 125

360 ,
126
360 ) have the same number199

of shares.200

In the scenarios above there are an even number of shares of size the midpoint. We201

arbitrarily assign half to the left and half to the right.202

We define the following intervals.203

I Definition 7.204

1. I1 = ( 124
360 ,

125
360 )205

2. I2 = ( 125
360 ,

126
360 ) (|I1| = |I2|, |I1 ∪ I2| = 28)206

3. I3 = ( 138
360 ,

180
360 )207

4. I4 = ( 180
360 ,

222
360 ) (|I3| = |I4|, |I3 ∪ I4| = 38)208

Henceforth all of the students considered will be 3-students. We now look at the students209

in a more detailed way than 2-students and 3-students.210

I Definition 8. Let 1 ≤ i1 ≤ · · · ≤ i3 ≤ 4. An e(i1, i2, i3)-student is a student who has, for211

each 1 ≤ j ≤ 3, a share in Iij . For example, an e(1, 1, 4)-students has two shares in I1 and212

one share in I4.213

Claim 1:214

1. The only possible students are:215

a. e(1, 1, 4)216

b. e(1, 2, 4)217

c. e(1, 3, 3)218

d. e(1, 3, 4)219

e. e(2, 2, 4)220

f. e(2, 3, 3)221

g. e(2, 3, 4)222

h. e(3, 3, 3)223

i. e(3, 3, 4)224

2. There are no shares in [ 208
360 ,

218
360 ]225

3. There are no shares in [ 142
360 ,

152
360 ] (this follows from the prior part and buddying).226

Proof of Claim 1:227

1) We establish that some students are impossible.228

A e(1, 4, 4)-student has more than 124
360 + 2× 180

360 = 484
360229

A e(2, 2, 3)-student has less than 2× 126
360 + 180

360 = 432
360230

The result follows from these two statements, though the proof is tedious.231

2) We look at which I4-shares are used232

A e(1, 1, 4) student uses I4-share > 470
360 − 2× 125

360 = 220
360233

A e(1, 2, 4) student uses I4-shares > 470
360 −

125
360 −

126
360 = 219

360234

A e(1, 3, 4) student uses I4-shares < 470
360 −

124
360 −

138
360 = 208

360235

A e(2, 2, 4) student uses I4-shares > 470
360 − 2× 126

360 = 218
360236

A e(2, 3, 4) student uses I4-shares < 470
360 −

125
360 −

138
360 = 207

360237
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A e(3, 3, 4) student uses I4-shares < 470
360 − 2× 138

360 = 194
360238

Hence the only shares in I4 that can be used are those < 208
360 or > 218

360 . The result follows.239

End of Proof of Claim 1240

We redefine the intervals.241

I Definition 9.242

1. I1 = ( 124
360 ,

125
360 )243

2. I2 = ( 125
360 ,

126
360 ) (|I1| = |I2|), |I1 ∪ I2| = 28)244

3. I3 = ( 138
360 ,

142
360 )245

4. I4 = ( 152
360 ,

180
360 )246

5. I5 = ( 180
360 ,

208
360 ) (|I4| = |I5|)247

6. I6 = ( 218
360 ,

222
360 ) (|I3| = |I6|, |I3 ∪ I4 ∪ I5 ∪ I6| = 38)248

By a proof similar to that of Claim 1 we obtain the following:249

Claim 2:250

1. The only possible students are: e(1, 1, 6), e(1, 2, 6), e(1, 3, 5), e(1, 4, 4), e(1, 4, 5), e(2, 2, 6),251

e(2, 3, 5), e(2, 4, 4), e(2, 4, 5), e(3, 3, 5), e(3, 4, 4), and e(4, 4, 4).252

2. There are no shares in [ 194
360 ,

202
360 ]253

3. There are no shares in [ 158
360 ,

166
360 ] (this follows from the prior part and buddying).254

We define the following intervals.255

I Definition 10.256

1. I1 = ( 124
360 ,

125
360 )257

2. I2 = ( 125
360 ,

126
360 ) (|I1| = |I2|, |I1 ∪ I2| = 28)258

3. I3 = ( 138
360 ,

142
360 )259

4. I4 = ( 152
360 ,

158
360 )260

5. I5 = ( 166
360 ,

180
360 )261

6. I6 = ( 180
360 ,

194
360 ) (|I5| = |I6|)262

7. I7 = ( 202
360 ,

208
360 ) (|I4| = |I7|)263

8. I8 = ( 218
360 ,

222
360 ) (|I3| = |I8|, |I3 ∪ · · · ∪ I8| = 38)264

By a proof similar to that of Claim 1 we obtain:265

Claim 3: The only possible students are: e(1, 1, 8), e(1, 2, 8), e(1, 3, 7), e(1, 4, 6), e(1, 5, 5),266

e(2, 2, 8), e(2, 3, 7), e(2, 4, 6), e(2, 5, 5), e(3, 3, 6), and e(4, 4, 4).267

Let268

1. |e(1, 1, 8)| = a269

2. |e(1, 2, 8)| = b270

3. |e(1, 3, 7)| = c271

4. |e(1, 4, 6)| = d272

5. |e(1, 5, 5)| = e273

6. |e(2, 2, 8)| = f274

7. |e(2, 3, 7)| = g275

8. |e(2, 4, 6)| = h276

9. |e(2, 5, 5)| = i277

10. |e(3, 3, 6)| = j278

11. |e(4, 4, 4)| = k279

FUN 2018
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Since |I1| = |I2|, 2a+ b+ c+ d+ e = b+ 2f + g+ h+ i, so 2a+ c+ d+ e = 2f + g+ h+ i280

Since |I3| = |I8|, c+ g + 2j = a+ b+ f281

Since |I4| = |I7|, d+ h+ 3k = c+ g282

Since |I5| = |I6|, 2e+ 2i = d+ h+ j283

Since |I1 ∪ I2| = 28, 2a+ 2b+ c+ d+ e+ 2f + g + h+ i = 28284

Since there are 22 3-students, a+ b+ c+ d+ e+ f + g + h+ i+ k = 22285

From the last two equations we obtain a+ b+ f = 6286

We combine I1 and I2 into a single interval. This reduces the system to 6 variables,
resulting in the equation

1 1 1 1 1 1
2 1 1 1 0 0
−1 1 0 0 2 0
0 −1 1 0 0 3
0 0 −1 2 −1 0



p

q

r

s

t

 =


22
28
0
0
0


However, one can check that eliminating the bottom 3 rows requires the top 2 rows to be in287

the ratio 7 : 9. 22 : 28 6= 7 : 9, so there is no solution. J288

The above proof used that
⌈ 2m

s

⌉
= 3 since that is the condition that leads to having289

2-shares and 3-shares. This is usually important since it gives us symmetry from matches, not290

just from buddying; however, in this case we just so happened to not need that symmetry.291

6 Finding a Procedure292

We now describe the program that finds the procedure showing f(47, 36) ≥ 124
360 . We guess293

that all shares are of the form x
360 where 124 ≤ x ≤ 236. But we can cut down those variables294

a lot based on the proof. For example, by modifying the proof slightly, we can deduce that295

there are no share of size 127
360 ,

128
360 , . . . ,

137
360 . This is a key factor in speeding up the program.296

We can also use the symmetries of where shares can be.297

For every way to split a muffin we have a variable for how many muffins are split that298

way, as follows: ( 124
360 ,

236
360 ) is associated to the variables y124,236, ( 125

360 ,
235
360 ) is associated with299

the variable y125,235, etc. This variable is the number of muffins that are split that way.300

For every way to give muffin shares to a student we have a variable for how many students301

get that set of shares, as follows: [ 87
360 ,

79
360 ,

69
360 ] is associated to the variable z87,79,69, [ 118

360 ,
117
360 ]302

is associated to the variables z118,117, etc. This variable is the number of students who get303

that share-size.304

For each size we express how many pieces are of that size in two ways.305

The number of pieces of that size based on the muffins. For example, the number of306

pieces of size 131
360 is y131,256. The number of pieces of size 180

360 is 2× y180,180.307

The number of shares of that size based on the students. For example, the number of
shares of size 131

360 is

z124,131,215 + · · ·+ z130,131,209 + 2z131,131,208 + z132,131,207 + · · ·+ z215,131,124

For each size we get an equation by equating the muffin-based and student-based ex-308

pressions. We have more equations based on the number of pieces and the number in each309

interval which falls out of the proof of the upper bound. This leads to a set of linear equations310

whose solution leads to a procedure.311

Here is the procedure for f(47, 36) ≥ 124
360 = 117

180 we obtained with this method:312



G. Cui et al. 15:9

1. Divide 1 muffin ( 90
180 ,

90
180 )313

2. Divide 2 muffins ( 93
180 ,

87
180 )314

3. Divide 2 muffins ( 101
180 ,

79
180 )315

4. Divide 2 muffins ( 104
180 ,

76
180 )316

5. Divide 6 muffins ( 109
180 ,

71
180 )317

6. Divide 6 muffins ( 111
180 ,

69
180 )318

7. Divide 14 muffins ( 117
180 ,

63
180 )319

8. Divide 14 muffins ( 118
180 ,

62
180 )320

9. Give 2 students [ 87
180

79
180

69
180 ]321

10. Give 2 students [ 90
180

76
180

69
180 ]322

11. Give 2 students [ 93
180

71
180

71
180 ]323

12. Give 2 students [ 101
180

71
180

63
180 ]324

13. Give 2 students [ 104
180

69
180

62
180 ]325

14. Give 6 students [ 109
180

63
180

63
180 ]326

15. Give 6 students [ 111
180

62
180

62
180 ]327

16. Give 14 students [ 118
180

117
180 ]328

The reader should be able to see how to generalize the method outlined above.329

What is described above is not quite what we have coded up (though we will). The330

Interval Method (see Section B) is another method to find lower bounds that gives information331

that can be used to cut down the time to find a procedure. We have coded up a version of332

what is outlined above with the interval method.333

We denote the algorithm given above (the one using Buddy-Match) VLOWER(m, s, α)334

where one finds a procedure showing f(m, s) ≥ α, hence verifying that f(m, s) ≥ α.335

7 The Proof that f(47, 36) ≤ 31
90 Reveals Much More336

The proof that f(47, 36) ≤ 31
90 can be modified very slightly (just notation) to obtain the337

following result (which we write in a strange way for later exposition):338

(∀k ≥ 1)
[
f(3× 11× k + 11 + 3, 33k + 3) ≤

11k + 7
5

3× 11× 3k + 3

]
More generally the following seems to be true empirically:339

for all d (d stands for difference and is m− s), for all 1 ≤ a ≤ 3d− 1 (a, d relatively primes),340

there exists X:341

(∀k ≥ 1)
[
f(3dk + d+ a, 3dk + a) ≤ dk +X

3dk + a

]
342

For d = 1 to 8, for all relevant a, we have found X. In many concrete cases we have343

shown that it is also an upper bound. In Section C we present the results for the d = 7 case.344

Note that we need k ≥ 1 since if k = 0 then we no longer have
⌈ 2m

s

⌉
= 3.345

8 Generating More General Theorems346

The techniques discussed in Section 7 generate theorems of the form347

(∀k ≥ 1)
[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
.
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However, the program can be modified to obtain more general theorems. As noted in348

Section 7 our program finds interesting values of X. That is, the program may find that349

(say) if X ≤ 7
6 then there are no e(1, 3, 4)-students. What is it about X ≤ 7

6 that makes this350

happen? It may be that (say) 1 ≤ a ≤ 5d
7 and a 6= 2d

3 makes this work, and it may be that351

X = max{ 2a
5 ,

a+d
6 }.352

We have taken the results from the program and, with the help of additional programs353

and our own ingenuity generated many theorems (we hope to fully automate it soon). These354

theorems are a great time saver since often the result we want falls out of them directly. We355

present a sample of such theorems in the Section D.356

9 How to find X357

The proof of Theorem 6 can be summarizes as follows: The assumption f(47, 36) > 31
90358

implies that a certain system of linear equations have a solution where all of the variables359

are natural numbers between 0 and s3 = 22. The system had no such solution, hence a360

contradiction.361

Imagine that we want an upper bound on f(47, 36) but do not know what it is ahead of
time. Following the line of reasoning in Section 7 we seek X such that

f(33 + 3 + 11, 33 + 3) ≤ 11 +X

33 + 3 .

We use a program to simulate the proof of Theorem 6 but with X instead of the actual362

numbers. This program will produce many values of X where something interesting happens,363

such as a type of student no longer being allowed. The program looks at the (finite) set of364

interesting values of X and finds the least one that causes the resulting system of linear365

equations to be unsolvable using natural numbers between 0 and 22. Hence we have a value366

of X. We then use VLOWER(47, 36, 11+X
36 ) to find the matching lower bound (if this does367

not work then the algorithm failed to find f(m, s)).368

For the values 47, 36 it was easy to find the value of X. For larger m, s it may be that369

verifying f(m, s) ≤ α is faster than finding the α. In the next two sections we examine how370

to speed up finding X.371

We leave it to the reader to generalize the algorithm to any m, s where
⌈ 2m

s

⌉
= 3; however,372

we give the following picture which represents intervals where 3-shares can be. In the picture373

each nonempty interval has the number of 3-shares in it (though y is not known) and a label374

such as I1 so we can refer to it. This picture is the result of many buddy-match sequences.375

( a+ d (I1) | a+ d (I2) )[ 0 ]
dk+X
3dk+a

dk+ a
2

3dk+a
dk+a−X

3dk+a
dk+2X
3dk+a

376

( y (I3) )[ 0 ]
dk+2X
3dk+a

dk+a+d−3X
3dk+a

dk+d−a+2X
3dk+a

377

( 2d− a− y (I4) | 2d− a− y (I5) )
dk+d−a+2X

3dk+a

dk+ a+d
2

3dk+a
dk+2a−2X

3dk+a

378

)[ 0 ]( y (I6) )
dk+2a−2X

3dk+a
dk+3X
3dk+a

dk+a+d−2X
3dk+a

379

Facts and Caveats:380
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1. |I1| = |I2|381

2. |I4| = |I5|382

3. In the picture it is unclear if the endpoint of I1 is included in I1. We do not include383

it; however, we take the even number of shares that are at that endpoint and arbitrary384

assign half to I1 and half to I2.385

4. There is a similar comment for I2, I4, and I5.386

We denote the version where you do not already have upper bound to check BUDMAT(m, s)387

and the version where you do BUDMAT(m, s, α) where α is the bound. We will avoid using388

BUDMAT(m, s) unless m, s are small since it may be slow.389

10 How to find X Cheating a Little390

Say you want to find f(213, 200). Since
⌈ 2×213

200
⌉

= 3 you could run BUDMAT(213, 200).
But the numbers are large! Following the line of reasoning in Section 7 we note that
d = 213− 200 = 13 and generalize the problem to finding an X such that

f(39k + 5 + 13, 39k + 5) ≤ 13k +X

39k + 5 .

Lets look at the k = 1 case: f(57, 44). Since
⌈ 2×57

44
⌉

= 3 you could run BUDMAT(57, 44).391

But the numbers are small! Oh, thats a good thing! Lets say the answer is α. Run392

VLOWER(57, 44, α) to verify that its a lower bound. If it is then solve α = 13+X
39+5 to find393

X. The proof you did for f(57, 44) ≤ 13+X
39+5 can be modified to show (∀k ≥ 1)[f(39k + 5 +394

13, 39k + 5) ≤ 13k+X
39k+5 ]. In particular f(213, 200) ≤ 13×5+X

39×5+5 = β. Run VLOWER(213, 300, β)395

to verify the lower bound (if this does not work then the algorithm failed to find f(57, 44)).396

This is cheating a little since we don’t really know that the such an X exists. But it has397

so far. And we do verify in the end.398

We leave it to the reader to generalize this procedure. We denote this algorithm399

CHEATALITTLE(m, s).400

11 How to find X Cheating a Lot401

Say you want to find f(1717, 1650). Since
⌈ 2×1717

1650
⌉

= 3 you could run BUDMAT(1717, 1650).
But the numbers are really large! Following the line of reasoning in Section 7 we note that
d = 1717− 1650 = 67 and generalize the problem to finding an X such that

f(201k + 42 + 67, 201k + 42) ≤ 67k +X

201k + 42 .

Lets look at the k = 1 case: f(310, 243). These numbers are still big!402

Lets look at the k = 0 case: f(109, 42). These numbers are small! Since
⌈ 2×109

42
⌉
≥ 4 you403

cannot run BUDMAT(109, 42)). But the situation is worse than that. Even if we bound404

f(109, 42) the proof will not use BUDMAT and hence cannot be modified to get an upper405

bound for f(201k + 42 + 67, 201k + 42). In fact, the answer for f(109, 42) should have no406

bearing on our problem.407

Except for one thing. Empirically it does. In all cases that we looked at the X obtained408

from knowing an upper bound on the k = 0 case of f(3dk + a+ d, 3dk + a) was the correct409

X for k ≥ 1. We proceed as if this is always true.410

We cannot use BUDMAT(109, 42); however, there are other techniques that to find411

an upper bound on f(m, s). They summarized in Section B. Use them. Lets say the412
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answer is α. Run VLOWER(109, 42, α) to verify that its a lower bound. If it is then solve413

α = X
42 to find X. The proof you did for f(109, 42) ≤ X

42 cannot be modified to show414

(∀k ≥ 1)[f(201k + 42 + 67, 201k + 42) ≤ 67k+X
201+42 ]. But you have a very good conjecture.415

Run BUDMAT(109, 42, 67+X
201+42 ). If it returns YES and a proof then modify the proof to416

obtain (∀k ≥ 1)[f(201k + 42 + 67, 201k + 42) ≤ 67k+X
201+42 ] (if this does not work then the417

algorithm failed to find f(1717, 1650)). In particular f(1717, 1658) ≤ 67×5+X
201×5+5 = β. Run418

VLOWER(1717, 1658, β) to verify the lower bound (if this does not work then the algorithm419

failed to find f(1717, 1650)).420

This is cheating a lot since we don’t really know that the k = 0 case has any bearing on421

the k ≥ 1 case. But it has so far, and we verify in the end.422

We leave it to the reader to generalize this procedure. We denote this algorithm423

CHEATALOT(m, s).424

12 A General Algorithm425

We present an algorithm that we conjecture always finds f(m, s) and operates in polynomial426

time.427

The reader should read Section B since we will be using FC, INT, and BUD which are428

explained there. They are other methods to find or verify upper bounds on f(m, s).429

1. Input(m, s).430

2. If m = s output 1. If gcd(m, s) = d ≥ 1 then call the algorithm recursively with431

f(m/d, s/d). If s = 2 then output 1
2 . If m < s then call the algorithm recursively to find432

f(s,m) and output m
s f(s,m).433

3. Compute α = FC(m, s). Compute VLOWER(m, s, α) to see if α is a matching lower434

bound. If it is then output α and stop.435

4. Compute α = INT(m, s). Compute VLOWER(m, s, α) to see if α is a matching lower436

bound. If it is then output α and stop.437

5. If
⌈ 2m

s

⌉
= 3 then:438

a. Compute α = CHEATALOT(m, s). Compute VLOWER(m, s, α) to see if α is a439

matching lower bound. If it is then output α and stop. (This might fail if the methods440

of Section B do not work on the input they are given.)441

b. Compute α = CHEATALITTLE(m, s). Compute VLOWER(m, s, α) to see if α is a442

matching lower bound. If it is then output α and stop.443

6. If
⌈ 2m

s

⌉
≥ 4 then let a = s and d = m−a. We seek f(3d×0+a+d, 3d×0+a). Recursively444

call f(3d+ a+ d, 3d+ a) (we could tell it to not bother with CHEATALOT(m, s) since445

that just asks to compute f(a+ d, a) using FC and INT). If the computation succeeds446

and returns α then run BUD(m, s, α) to verify that f(m, s) ≤ α. If this is verified then447

compute VLOWER(m, s, α) to see if α is a matching lower bound. If it is then output α448

and stop.449

7. If nothing above works then output FAILED!450

This can be sped up by, upon first seeing m, s, see if any of the general theorems such as451

those in Sections C and D apply to get an upper bound α and then run VLOWER(m, s, α).452

13 Open Problems and Speculation453

We would like to think that the algorithm in the last section will always work and hence454

computing f(m, s) is in P. But we’ve been down this road before where we think we can455
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compute all f(m, s) only to come to a troublesome case which leads to a new technique456

and more co-authors. The following are possible outcomes: (1) we prove that the algorithm457

always works, (2) we keep running the algorithm and it always works but when the numbers458

get too big we can’t tell, (3) we come across a value the algorithm does not work on and this459

leads to a a new technique and more co-authors.460

We believe that computing f(m, s) is in P. One piece of evidence for this is that for all s,461

for all m ≥ s3, f(m, s) = FC(m, s). Hence if you fix s then for large enough s the problem is462

very easy. One might call this Fixed Parameter very tractable.463

We believe that f(m, s) only depends on m
s . This seems provable.464

A A Mixed Integer Program for f(m, s)465

The following theorem shows that f(m, s) always exists (as opposed to having better and466

better algorithms), is rational, and is computable. This theorem was independently discovered467

by Veit Elser, within the math-fun email list, in 2009.468

I Theorem 11. Let m, s ≥ 1.469

1. There is a mixed integer program with O(ms) binary variables, O(ms) real variables,470

O(ms) constraints, and all coefficients integers of absolute value ≤ max{m, s} such that,471

from the solution, one can extract f(m, s) and a protocol that achieves this bound. This472

MIP can easily be obtained given m, s.473

2. f(m, s) is always rational. This follows from part 1.474

3. In every optimal protocol for m muffins and s students all of the pieces are of rational475

size. This follows from part 1.476

4. The problem of, given m, s, determine f(m, s), is decidable. This follows from part 1.477

Proof. Consider the following (failed) attempt to solve the problem using linear programming.478

1. The variables are xij where 1 ≤ i ≤ m and 1 ≤ j ≤ s. The intent is that xij is the479

fraction of muffin i that student j gets.480

2. For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, 0 ≤ xij ≤ 1.481

3. For each 1 ≤ i ≤ m,
∑s

j=1 xij = 1.482

This says that the amount of muffin i that student 1 gets, students 2 gets, . . ., student s483

gets all adds up to 1.484

4. For each 1 ≤ j ≤ s,
∑m

i=1 xij = m
s .485

This says that the amount that student j gets from muffin 1, muffin 2, . . ., muffin m all486

adds up to m
s .487

5. For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, xij ≥ z.488

6. Maximize z.489

This does not work. The problem is that (say) x13 could be 0. In fact it is likely that490

some xij is 0. This makes z = 0. What we really want is491

xij 6= 0 =⇒ xij ≥ z

It is easy to show that f(m, s) ≥ 1
s . Hence every nonzero xij is ≥ 1

s . We will use this in492

our proof.493

For 1 ≤ i ≤ m, 1 ≤ j ≤ s modify the linear program above as follows.494

1. Add variable yij which is in {0, 1}.495

2. Add the constraint xij + yij ≤ 1. Note that496
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xij = 0 =⇒ xij + yij ≤ 1, so the constraint imposes no condition on yij .497

xij > 0 =⇒ yij < 1 =⇒ yij = 0 =⇒ xij + yij = xij .498

3. Add the constraint xij + yij ≥ 1
s . Note that499

xij = 0 =⇒ yij ≥ 1
s =⇒ yij = 1 =⇒ xij + yij = 1500

xij > 0 =⇒ xij ≥ 1
s (since we know all non-zero pieces are ≥ 1

s ) =⇒ xij + yij ≥ 1
s ,501

so the constraint imposes no condition on yij .502

4. Replace the constraint z ≤ xij with z ≤ xij + yij .503

If xij = 0 then the constraint

z ≤ xij + yij = 1

is always met and hence is (as it should be) irrelevant. If xij > 0 then the constraint

z ≤ xij + yij = xij

is the constraint we want.504

Solve the resulting mixed integer program. Since all of the coefficients are rational the505

answer will be rational.506

J507

B Other Methods508

We discuss three methods for finding an upper bound on f(m, s).509

The method from the following theorem is called The Floor Ceiling Method or just510

FC-method. Note that it is very fast and gives you the upper bound.511

I Theorem 12. Assume that m, s ∈ N and m
s /∈ N.

f(m, s) ≤ max
{

1
3 ,min

{
m

s d2m/se , 1−
m

s b2m/sc

}}
.

Proof. Assume we have an optimal (m, s) protocol. Since m
s /∈ N we can assume every512

muffin is cut into at least 2 pieces.513

Case 1: Some muffin is cut into u ≥ 3 pieces. Then some piece is ≤ 1
3 .514

Case 2: All muffins are cut into 2 pieces. Since there are 2m shares and s students both of515

the following happen:516

Some student gets t ≥ d2m/se shares, so some share is ≤ m
sd2m/se .517

Some student gets t ≤ b2m/sc shares, so some share x is ≥ m
sb2m/sc . B(x)) ≤ 1− m

sb2m/sc .518

Putting together Cases 1 and 2 yields the theorem.519

J520

We denote the function from Theorem 12 FC(m, s).521

The other two methods are to long to describe fully here so we just sketch.522

The Interval Method is a primitive version of the Buddy-Match method where we do not523

use symmetry and (since we have shares other than 2-shares and 3-shares) cannot use the524

Match in Buddy-Match. This method is fast and can be used to derive the answer. We525

denote the result INT(m, s).526

The Buddy Method is like the Buddy-Match Method only we do not use the Match part527

since we have shares other than 2-shares and 3-shares. And like the Buddy-Match Method528

this one is faster if you already have the answer. We denote the version where you do not529

already an upper bound to check BUD(m, s) and the version where you do BUD(m, s, α)530

where α is the bound.531
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C Everything You Ever Wanted to Know About f(s + 7, s)532

By either cheating a little (Section 10) or cheating a lot (Section 11) we have obtained533

formulas for f(3dk+a+d, 3dk+a) for 1 ≤ d ≤ 50 and 1 ≤ a ≤ 3d−1 (a, d relatively primes).534

We present the results for d = 7. Note that for most of the formulas the formula which is535

supposed to only hold for k ≥ 1 also holds for k = 0 (with a different proof).536

I Theorem 13.537

1. a. f(8, 1) = 1. For all k ≥ 1, f(21k + 8, 21k + 1) ≤ 7k+X
21k+1 where X = 1

2 .538

b. For all k ≥ 0, f(21k + 9, 21k + 2) ≤ 7k+X
21k+2 where X = 1.539

2. For all k ≥ 0, f(21k + 10, 21k + 3) ≤ 7k+X
21k+3 where X = 4

3 .540

3. For all k ≥ 0, f(21k + 11, 21k + 4) = 7k+X
21k+4 where X = 9

5 .541

4. For all k ≥ 0, f(21k + 12, 21k + 5) ≤ 7k+X
21k+5 where X = 2.542

5. For all k ≥ 0, f(21k + 13, 21k + 6) ≤ 7k+X
21k+6 where X = 13

5 .543

6. For all k ≥ 0, f(21k + 15, 21k + 8) ≤ 7k+X
21k+8 where X = 3.544

7. For all k ≥ 0, f(21k + 16, 21k + 9) ≤ 7k+X
21k+9 where X = 11

3 .545

8. For all k ≥ 0, f(21k + 17, 21k + 10) ≤ 7k+X
21k+10 where X = 4.546

9. For all k ≥ 0 f(21k + 18, 21k + 11) ≤ 7k+X
21k+11 where X = 9

2 .547

10. For all k ≥ 0 f(21k + 19, 21k + 12) ≤ 7k+X
2ak+12 where X = 19

4 .548

11. For all k ≥ 0 f(21k + 20, 21k + 13) ≤ 7k+X
21k+13 where X = 5.549

12. For all k ≥ 0: f(21k + 22, 21k + 15) = 1
3 ,550

13. For all k ≥ 0: f(21k + 23, 21k + 16) = 1
3 ,551

14. For all k ≥ 0: f(21k + 24, 21k + 17) = 1
3 ,552

15. For all k ≥ 0: f(21k + 25, 21k + 18) = 1
3 ,553

16. For all k ≥ 0: f(21k + 26, 21k + 19) = 1
3 ,554

17. For all k ≥ 0: f(21k + 27, 21k + 20) = 1
3 .555

Note that the last few answers were 1
3 and there is an equality. The 1

3 follows from556

Theorem 14. The equality holds since we have proven that, for all m > s, f(m, s) ≥ 1
3 .557

D A Sample of General Theorems558

In all cases a, d are relatively prime.559

I Theorem 14. If a ∈ {2d + 1, . . . , 3d − 1} then f(3dk + a + d, 3dk + a) ≤ dk+X
3dk+a where560

X = a
3 , so f(3dk + a+ d, 3dk + a) ≤ 1

3 .561

I Theorem 15. If a ∈ {1, . . . , 3d− 1}, a 6= d, then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where562

X = max{a
3 ,

a+d
5 , 2a−d

3 }.563

I Theorem 16. If 1 ≤ a ≤ 3d− 1 and 5a 6= 7d then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where564

X = max{a
3 ,

a+d
5 , a+2d

6 , 3a−2d
4 }.565

I Theorem 17. If 1 ≤ a ≤ 5d
7 and a 6= 2d

3 then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where566

X = max{ 2a
5 ,

a+d
6 }.567

I Theorem 18. If 5d
7 ≤ a ≤ d− 1 then f(3dk + a+ d, 3dk + a) ≤ dk+X

3dk+a where568

X = max{ 2a
5 ,

3a−d
4 }.569

I Theorem 19. If 5d
13 ≤ a ≤

13d
29 and a 6= 2

5d then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where570

X = max{ 5a−d
6 , a+d

8 , 3a
7 }.571
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E If m ≥ s then f(m, s) ≥ 1/3572

Before showing the general technique we give an example.573

Example: f(19, 17) ≥ 1
3 .574

We express 19
17 as 57

51 since other fractions will have a denominator of 51.575

We initially divide the 19 muffins ( 1
3 ,

1
3 ,

1
3 ). There are now 57 pieces 1

3 -shares. We576

initially give 11 students 3 1
3 -shares and 6 students 4 1

3 -shares. (In the proof below W = 3,577

sW = s3 = 11, and sW +1 = s4 = 6.) A student who gets 3 (4) shares is called a 3-student578

(4-student).579

We describe a process whereby students give pieces of muffins, called gifts, to other580

students so that, in the end, all students have 57
51 . Each gift leads to a change in how the581

muffins are cut in the first place; however, there will never be a muffin of size < 1
3 .582

Each 4-student has 4
3 = 68

51 and hence has to give (perhaps in several increments)583

68
51 −

57
51 = 11

51 to get down to 57
51 . Realize that if a 4-student gives 11

51 to a 3-student, then584

the 3-student now has 51
51 + 11

51 = 62
51 >

57
51 .585

Each 3-student has 51
51 and hence has to receive 57

51 −
51
51 = 6

51 to get up to 57
51 .586

Call the 11 3-students g1, . . . , g11.587

Call the 6 4-students f1, . . . , f6.588

We use a notation that we just give an example of:589

f1 gives x to g1 by taking two 1
3 -pieces, combining them, cutting off a piece of size x,590

giving it to g1 while keeping the rest. g1 takes the piece given to him and combines it with a591

1
3 piece. Notice that in terms of pieces we are taking three pieces of size 1

3 (2 from f1 and 1592

from g1) and turning them into 1 piece of size 2
3 − x and one of size 1

3 + x. Hence we can593

easily rearrange how the muffins are cut.594

x(f1 → g1)
We need to make sure this procedure never results in a piece that is < 1

3 . In the above595

example (1) f1 now has a piece of size 2
3 − x, hence we need x ≤ 1

3 , (2) g1 now has a piece of596

size 1
3 + x, which is clearly ≥ 1

3 . Hence the only restriction is x ≤ 1
3 .597

1. 11
51 (f1 → g1). Now f1 has 57

51 . YEAH. However, g1 has 62
51 .598

2. 5
51 (g1 → g2). Now g1 has 62

51 −
5

51 = 57
51 . YEAH. However, g2 has 51

51 + 5
51 = 56

51 .599

3. 1
51 (f2 → g2). Now g2 has 57

51 . YEAH. However, f2 has 67
51 .600

4. 10
51 (f2 → g3). Now f2 has 57

51 . YEAH. However, g3 has 61
51 .601

5. 4
51 (g3 → g4). Now g3 has 57

51 . YEAH. However, g4 has 55
51 .602

6. 2
51 (f3 → g4). Now g4 has 57

51 . YEAH. However, f3 has 66
51 .603

7. 9
51 (f3 → g5). Now f3 has 57

51 . YEAH. However, g5 has 60
51 .604

8. 3
51 (g5 → g6). Now g5 has 57

51 . YEAH. However, g6 has 54
51 .605

9. 3
51 (f4 → g6). Now g6 has 57

51 . YEAH. However, f4 has 65
51 .606

10. 8
51 (f4 → g7). Now f4 has 57

51 . YEAH. However, g7 has 59
51 .607

11. 2
51 (g7 → g8). Now g7 has 57

51 . YEAH. However, g8 has 53
51 .608

12. 4
51 (f5 → g8). Now g8 has 57

51 . YEAH. However, f5 has 64
51 .609

13. 7
51 (f5 → g9). Now f5 has 57

51 . YEAH. However, g9 has 58
51 .610

14. 1
51 (g9 → g10). Now g9 has 58

51 . YEAH. However, g10 has 52
51 .611

15. 5
51 (f6 → g10). Now g10 has 57

51 . YEAH. However, f6 has 63
51 .612

16. 6
51 (f6 → g11). Now f6 has 57

51 . YEAH. However, g11 has 57
51 . OH. thats a good thing!613

YEAH- we are done.614

Note that the first x was 11
51 ≤

1
3 and the remaining x were all ≤ 11

51 ≤
1
3 . Hence all pieces615

in the final protocol are ≥ 1
3 .616

End of Example617
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I Theorem 20. For all m ≥ s, f(m, s) ≥ 1
3 .618

Proof. Divide all the muffins into ( 1
3 ,

1
3 ,

1
3 ). Initially distribute them as evenly as possible619

among the students. There will be a number W such that some students get W shares and620

some get (W + 1)-shares. Let sW (sW +1) be the number of students who get W (W + 1)621

shares.622

We do not need the following but are noting it anyway. If s does not divide 3m then623

W = 3m
s and sW , sW +1 are unique and determined by:624

WsW + (W + 1)sW +1 = 3m
sW + sW +1 = s

625

(Technically, if s | 3m there are two possible values of W .)626

A student who gets W (W + 1) shares we call a W -student ((W + 1)-student). All627

W -students get W
3 . All (W + 1)-students get W +1

3 .628

A W -student must get < m
s : if a W -student got > m

s then all students would get > m
s629

and hence there would be > sm
s = m muffins total. A (W + 1)-student must get > m

s : if630

a (W + 1)-student got < m
s then all students would get < m

s and hence there would be631

< sm
s = m muffins total.632

Hence we have:633

m

s
− W

3 ≤
1
3 (1)634

W + 1
3 − m

s
≤ 1

3 (2)635
636

Now we will need to smooth out the distribution so that everyone receives m
s . We will do637

this by doing a sequence of moves of the form x(fi → gj) or x(gi → gj). as defined in the638

example.639

We will assume sW +1 and sW are relatively prime (this only comes up in Claim 3 below).640

This is fine because if they have a common factor d, we can just use the procedure for the641
sW +1

d , sW

d case repeated d times.642

Claim 1:643

1. If sW +1 < sW then W +1
3 − m

s > m
s −

W
3 .644

2. If sW < sW +1 then W +1
3 − m

s > m
s −

W
3 .645

Proof of Claim 1:646

sW +1 ×
W + 1

3 + sW ×
W

3 = m

sW +1 ×
(
m

s
+ W + 1

3 − m

s

)
+ sW

(
m

s
+ W

3 −
m

s

)
= m.

(
sW +1 + sW

)
m

s
+ sW +1

(
W + 1

3 − m

s

)
+ sW

(
W

3 −
m

s

)
= m

s× m

s
+ sW +1

(
W + 1

3 − m

s

)
+ sW

(
W

3 −
m

s

)
= m

W + 1
3 − m

s
= sW

sW +1

(
m

s
− W

3

)

FUN 2018
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Both parts follow.647

End of Proof of Claim 1648

We give the procedure to obtain f(m, s) ≤ 1
3 . There are two cases.649

Case 1: sW +1 < sW . Hence by Claim 1 W +1
3 − m

s > m
s −

W
3 .650

Call the sW W -students g1, . . . , gsW
.651

Call the sW +1 (W + 1)-students f1, . . . , fsW +1 .652

1. Let x = W +1
3 − m

s . Note that x ≤ 1
3 . Do x(f1 → g1). Now f1 has m

s . YEAH. However,653

g1 has W
3 + W +1

3 − m
s > m

s . (This is where we use sW +1 < sW , or more accurately the654

consequence of that from Claim 1.)655

2. Let x = 2W +1
3 − 2 m

s . Do x(g1 → g2). Now g1 has m
s . YEAH.656

3. If g2 has > m
s then g2 gives enough to g3 so that g2 has m

s . Keep up this chain of657

g1, g2, g3, . . . until there is a gi such that gi end up with < m
s (though more than the W

3658

that gi had originally).659

4. Do x(f2 → gi) where x is such that gi will now have m
s .660

5. Do x(f2 → gi+1) where x is such that f2 will now have m
s . Repeat the same chain of gi’s661

as in step 3.662

6. Repeat the above steps until you are done.663

We need to show that (1) there is never a piece of size < 1
3 , and (2) the process ends with664

every student getting m
s .665

Claim 2: The first gift is ≤ 1
3 and no gift is larger.666

Proof of Claim 2: Let C = W +1
3 − m

s which is the size of the first gift. By equation (2)667

C ≤ 1
3 .668

Assume that all gifts so far have been ≤ C. We analyze the three kinds of gifts and show669

that in all cases the gift is ≤ C.670

x(fi → gj) where (1) initially fi has > m
s , gj has < m

s , and (2) after the gift fi has m
s .671

When this occurs it is fi’s first or second gift giving. (This happens in steps 1 and 5672

above, and later as well.) Before the gift fi has at least m
s but at most W +1

3 , so this gift673

has size at most W +1
3 − m

s = C.674

x(gi → gi+1) where (1) initially gi has > m
s , gj has < m

s , and (2) after the gift gi has675

m
s . When this occurs gi has received a gift once and this is gi’s first time giving. (This676

happens in steps 2 and in the chain referred to in step 5.) Since gi just received a gift of677

size ≤ C she has ≤ W
3 + C. Hence the gift is ≤ W

3 −
m
s + C ≤ C.678

x(fi → gj) where (1) initially fi has > m
s , gj has < m

s , and (2) after the gift gj has m
s .679

This will be fi’s first time giving. (This happens in step 4 above.) Before the gift fi has680

at least W
3 but at most m

s , so this gift has size at most m
s −

W
3 ≤ C (by Claim 1).681

Claim 3: If sW and sW +1 are relatively prime then the process terminates with all682

students having m
s .683

Proof of Claim 3:684

In each step all of the fi have at least m
s . In each step the number of students who have685

the correct amount of muffin goes up. One may be worried that at some point we will try to686

do step 4 (for example) of the procedure and there will be no gi left who need more muffin.687

But this is not possible because until the process terminates the f ’s always have more muffin688

than they need, so there is always a g with insufficient muffin.689

One may also be worried that eventually we will get all of the f ’s to have m
s , but the g’s690

will not all have m
s . This is not possible either, because whenever we only make gifts from f691

to g when there is no g with more than m
s .692
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Finally, if sW and sW +1 are not relatively prime, it is possible that the procedure will693

terminate early because in step 5 the size of the donation x is 0. If this occurred it would694

mean that there is some subset of F f ’s and G g’s each of which having exactly m
s , who only695

made donations amongst themselves. But then F
G = sW +1

sW
, a contradiction.696

End of Proof of Claim 3697

Case 2: sW < sW +1. This is similar to Case 1 except that instead of f1 giving g1 so that f1698

has m
s , f1 gives to g1 so that g1 has m

s . Hence we have a chain of fi’s instead of a chain of699

gi’s. J700
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