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WHAT DOES IT TAKE TO PROVE FERMAT’S LAST THEOREM?
GROTHENDIECK AND THE LOGIC OF NUMBER THEORY

COLIN MCLARTY

Abstract. This paper explores the set theoretic assumptions used in the current published
proof of Fermat’s Last Theorem, how these assumptions figure in the methods Wiles uses,
and the currently known prospects for a proof using weaker assumptions.

Does the proof of Fermat’s Last Theorem (FLT) go beyond Zermelo
Fraenkel set theory (ZFC)? Or does it merely use Peano Arithmetic (PA)
or some weaker fragment of that? The answers depend on what is meant
by “proof” and “use,” and are not entirely known. This paper surveys
the current state of these questions and briefly sketches the methods of
cohomological number theory used in the existing proof.
The existing proof of FLT is Wiles [1995] plus improvements that do not
yet change its character. Far from self-contained it has vast prerequisites
merely introduced in the 500 pages of [Cornell et al., 1997]. We will say
that the assumptions explicitly used in proofs that Wiles cites as steps in his
own are “used in fact in the published proof.” It is currently unknown what
assumptions are “used in principle” in the sense of being proof-theoretically
indispensable to FLT. Certainly much less than ZFC is used in principle,
probably nothing beyond PA, and perhaps much less than that.
The oddly contentious issue is universes, often called Grothendieck uni-
verses.1 On ZFC foundations a universe is an uncountable transitive set U
such that 〈U,∈〉 satisfies the ZFC axioms in the nicest way: it contains the
powerset of each of its elements, and for any function from an element of U
to U the range is also an element of U. This is much stronger than merely
saying 〈U,∈〉 satisfies the ZFC axioms. We do not merely say the powerset
axiom “every set has a powerset” is true with all quantifiers relativized to U.
Rather, we require “for every setx ∈ U , the powerset of x is also inU”where
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1See Grothendieck [1971] and the fuller account Artin et al., [1972, vol. I, pp. 185–217].
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360 COLIN MCLARTY

no quantifier in the definition of the powerset of x is relativized to U . What
looks like the powerset of x as seen from inside U has to be the powerset as
seen in the larger ambient world of sets. The condition on images of func-
tions is similarly stronger than saying 〈U,∈〉 satisfies the replacement axiom
scheme relativized to U. It says every function from an element of U to U
which exists in the ambient world of sets is itself an element ofU. This extra
strength guarantees that any set theoretic construction applied to sets in U
will give the same result whether it is interpreted inside of U or in the larger
ambient world of sets. The use of universes constantly depends on that.
Grothendieck gave a proof of what set theorists already knew: the defini-
tion of a universe in ZFC is the same as saying U is the set Vα of all sets
with rank below α for some uncountable strongly inaccessible cardinal α
[Artin et al., 1972, vol. I, p. 196]. Since each universe models ZFC, the
existence of a universe or of an uncountable strongly inaccessible cardinal
is not provable in ZFC. Grothendieck’s own axiom of universes posited
that every set is contained in some universe, which by replacement implies
there are proper-class many successively larger universes corresponding to
successively larger inaccessibles. We write ZFC+U for the more modest the-
ory of one universe. That is, ZFC+U consists of ZFC plus the assumption
of a universe, or equivalently the assumption of one uncountable strongly
inaccessible cardinal.
So ZFC+U certainly implies more statements of arithmetic than ZFC
alone.2 This is Gödel’s observation: any axiom implying consistency of
ZFC thereby implies statements of arithmetic that ZFC does not, since
consistency of ZFC can be expressed as a statement of arithmetic which
is not implied by ZFC. This makes the assumption of a universe quite
different from the continuum hypothesis or other axioms which extend ZFC
without increasing the consistency strength or otherwise implying any new
arithmetic. But we will see this Gödel phenomenon does not bear on FLT.
This paper aims to explain how and why three facts coexist:
1. Universes organize a context for the rather explicit arithmetic calcula-
tions proving FLT or other number theory.

2. Universes can be eliminated in favor of ZFC by known devices though
this is never actually done (and this remains far stronger than PA).

3. The great proofs in cohomological number theory, such as Wiles [1995]
or Deligne [1974], or Faltings [1983], use universes in fact.

Large cardinals as such were neither interesting nor problematic to Groth-
endieck and this paper shares his view. For him they were merely legitimate
means to something else. He wanted to organize explicit calculational arith-
metic into a geometric conceptual order. He found ways to do this in coho-
mology and used them to produce calculations which had eluded a decade

2Throughout this paper “arithmetic” means first order arithmetic, that is statements of
PA either in the language of PA or interpreted in ZFC.
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WHAT DOES IT TAKE TO PROVE FERMAT’S LAST THEOREM? 361

of top mathematicians pursuing the Weil conjectures [Osserman, 2008]. He
thereby produced the basis of most current algebraic geometry and not only
the parts bearing on arithmetic. His cohomology rests on universes but
weaker foundations also suffice at the loss of some of the desired conceptual
order.
Section 1 gives one specific, central use of universes inWiles’s proof of FLT.
Section 2 introduces prospects for proving FLT in PA or aweaker arithmetic.
Sections 3–4 sketch cohomological number theory andGrothendieck’s strat-
egy. Large structures occupy Sections 5–7, including comparison of three
successively stronger extensions of ZFC at the end of Section 5. We cite
Deligne [1977, 1998] to show there is no contradiction in finding universes
dispensable in principle and useful in fact. Both are true. There is a want
of perception in denying either one. At the end of Section 7 we describe
what is currently known about expressing cohomological proofs in ZFC
without universes. It can certainly be done with some loss to the theoretical
organization and we give a conjectural way to do it with no perceptible loss.
Section 8 revisits the question of bringingWiles’s proof closer to PA. No one
who has looked at Wiles’s proof seriously doubts that it could be unwound
into a rather high order non-conservative extension of PA, say 8-th order,
by perfectly routine means which however would do tremendous damage
to the theoretical organization. There is some evidence that a great deal of
progress in arithmetic, not routine, can produce a version of the proof in a
conservative higher order extension of PA and thus effectively in PA. We can
set no limit to how far the proof may be simplified by currently unforeseeable
progress in arithmetic. Section 9 draws conclusions for the foundations of
mathematics.
There are two quite separate size ranges in this paper. We call a set or
structure “large” if it is at least as large as some universe. What we call “very
small” structures are all at most continuum sized. Nearly every specific
structure we talk about is either large or very small in this sense.

§1. Use of universes. Harvey Friedman offers a clear and simple state-
ment: “I have been told that there is absolutely no trace back from the
references used in the body of the Wiles paper to universes.”3 But we will
see in a moment that a key reference in Wiles’s proof goes straight back to
Grothendieck and universes.
The same or another unnamed expert dismisses any practical role for
universes: “Nobody who understands such proofs does anything but think
about very small structures from the start till the end.”4 This is true most

3E-mail list FOM, Friedman post titled “Report from expert, Tue Apr 6, 1999”
archived at cs.nyu.edu/pipermail/fom.
4E-mail list FOM, Friedman post titled “Using Universes? The expert speaks

again, Thu Apr 8, 1999” archived at cs.nyu.edu/pipermail/fom.
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362 COLIN MCLARTY

of the time and is central to cohomological number theory. Grothendieck
created the large structures of cohomology to work so smoothly that one
reaches arithmetic through them almost without thinking about them.
When beginning active research a number theorist may be well advised to
become familiar with theorems on large structures from SGA 4 and related
references before lingering long to study the proofs—and rather focus on
arithmetic and geometry—until the theorist needs to prove some modified
form of one. BarryMazur pointed out this strategy tomewhile stressing that
anyone who actually works with the ideas will modify many general results
over time so that mastery requires both the large-structure theorems and a
great deal of small-structure arithmetic. In fact people who understand the
proofs routinely cite the large-structure theorems in print, and not rarely
re-work the proofs to cover new cases.
Wiles explains how his search for the proof was blocked at one point by
a specific problem of arithmetic. He says “the turning point in this and in-
deed in the whole proof came” when the search led him to two cohomology
invariants and “I learned that it followed from Tate’s account of Groth-
endieck duality theory for complete intersections that these two invariants
were equal” [Wiles, 1995, p. 451]. The body of the proof (pp. 486–7) cites a
source:

For a summary of the duality statements used in this context,
see [Mazur, 1977, §II.3] . . . . To justify the reduction in detail see
the arguments in [Mazur, 1977, §II.3].

Mazur does not give complete proofs but cites Grothendieck and Dieu-
donné [1961]whichwe abbreviateEGAIII, andDeligne andRapoport [1973]
which cites the same parts of EGA III. Grothendieck and Dieudonné use
functor categories between locally small categories (p. 349). From the view-
point of ZFC these locally small categories are proper classes. A function
between proper classes is a proper class, so any “set” of functions between
two proper classes is a collection of proper classes. Let us call such a collec-
tion a superclass.
If we are concerned to rise in rank as little as possible then by apt choice
of details we can say in ZFC+U locally small categories have the rank of
the universe U and the functor categories between them are superclasses
one rank higher.5 Limiting the rise in rank this way is actually pointless
in ZFC+U which has sets of rank � above U for every ordinal number � ;
but it would be crucial if we wanted to use weaker extensions of ZFC which
only add proper classes and a limited number of ranks above them. Anyway
that will not be the end of our rise in rank, since categorical manipulation
of these superclass categories means placing them into categories of yet

5Define a category as a composition operator on a class of arrows. If you defined a
category as a Kuratowski ordered pair of a class of arrows and a composition operator on it
then locally small categories would be two ranks above U .
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WHAT DOES IT TAKE TO PROVE FERMAT’S LAST THEOREM? 363

higher rank. Grothendieck’s foundation for this was universes as he says on
the first page of chapter 0 of the book version of EGA [Grothendieck and
Dieudonné, 1971, p. 19].
Wiles [1995] and Mazur [1977] focus their attention on very small struc-
tures. That is finite or countable or at most continuum-sized structures.
But they apply general theorems whichGrothendieck and Dieudonné [1961]
prove by placing those very small structures inside large structures. These
theorems are still widely cited today and are still proved using universes as
by Lipman and Hashimoto [2009, pp. 160, 287].
Deligne and Rapoport explain that “these techniques give systematic
means” of presenting and proving their results (p. 151). All the authors
including Grothendieck and Dieudonné know that fragments of these the-
orems adequate to any given application in arithmetic can be stated inside
ZFC by abandoning the system in favor of technicalities and circumlocu-
tions suited to that application. The authors prefer systematic means since
the material is lengthy enough already.

§2. Prospects for a weak proof. Angus Macintyre [forthcoming] lays out
a program to express the Modularity Thesis (MT) central to Wiles [1995]
as a Π01 statement of arithmetic and argues that it is provable in PA. This
program could lead to a PA proof of MT, and possibly one of FLT without
using MT. It calls for substantial new work in arithmetic. While closely
based on Wiles [1995] it is no routine adaptation.
Macintyre points out that analytic or topological structures such as the
p-adic, real, and complex numbers enter Wiles’s proof precisely as com-
pletions of structures such as the ring of integers, or the field of rational
numbers, which are interpretable in PA. Macintyre outlines how to replace
many uses of completions in the proof by finite approximations within PA.
He shows how substantial known results in arithmetic and model theory
yield approximations suited to some cases. He specifies other cases which
will need numerical bounds which are not yet known. Theorems of this kind
can be very hard. He notes that even routine cases can be so extensive that
“it would be useful to have some metatheorems” (page 14). The program
will be a huge amount of work. If it succeeds by using metatheorems then
further progress in the same direction might or might not eventually allow
us to eliminate the metatheorems in favor of an explicit proof in PA.
The situation is familiar: A more elementary proof normally requires
more delicate calculations. These normally reveal more information. It is
normally longer. We may learn a great deal by showing it exists even in cases
where it would be idle labor to make it explicit. The special difficulty for FLT
is the size of the currently known proof. Wiles [1995] gives 84 references.
Many prove steps that Wiles needs. Most are not short themselves. And
they rely on other quite advanced references.
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364 COLIN MCLARTY

Harvey Friedman conjectures that FLT is provable in Exponential Func-
tion Arithmetic (EFA). See Avigad [2003].6 There is currently no indepen-
dent strategy to prove this. Probably the most promising is to begin with
Macintyre’s program and, so far as that succeeds, try to take it on to EFA.
The point for us here applies to EFA much more strongly than to PA
just because EFA is much weaker proof-theoretically. We can put it in the
terms of Avigad [2003, p. 270]. Someone might some day give “an informal
proof that there is a formal derivation of the theorem in some conservative
extension of EFA” without being able to give any independent “informal
description of a derivation of the theorem in EFA.” Our terminology would
describe that situation by saying the conservative extension is used in fact
and EFA is used in principle. We would know EFA proofs of FLT exist
while that knowledge would depend on actually describing a proof in the
conservative extension.
Some have identifiedme as a “proponent” ofGrothendieck’smethods, and
conclude that I oppose finding proofs from weak principles. The premise is
roughly true, the conclusion is absurd. I am not against finding any proofs.
But it will always remain that the first known proof of FLT and the only one
yet known today fifteen years afterWiles gave it, cites and relies on published
proofs that explicitly use universes. Nor does Macintyre in any way object
to this proof! There is synergy and not opposition between Macintyre’s
program and Grothendieck’s methods. Macintyre [2003] repeatedly urges
model theorists to look more at those methods.7

It would be fantastic to find the weakest comprehension and induction
principles sufficient for FLT but graduate number theory seminars will prob-
ably not teach those principles. If the history of mathematics is any guide,
thenwe can be sure that over time the proof of FLTwill be radically simplified
but that is not the same thing as looking for the weakest logical principles.
For the foreseeable future it is likely that any proofs of FLT to be found in
weak theories of arithmetic will be discovered in the first place, and will be
comprehensible after they are discovered, only by applying metatheorems to
some shorter known proof using stronger logic. In this context Wiles [1995]
counts as a short proof.

§3. The idea of cohomological number theory. The past 50 years have seen
huge progress in number theory in the form of arithmetic algebraic geometry
using certain spaces called schemes. The project goes back to Riemann,
Dedekind, and Kronecker assimilating algebraic numbers to algebraic func-
tions on a Riemann surface but it relies on tools of cohomology created
by Serre and Grothendieck in the 1950s. Schemes are no harder to define

6EFA is first order arithmetic allowing only quantifier free induction, taking successor,
addition, multiplication, and exponentiation as binary operators.
7E.g., topos theory on p. 197 and Grothendieck’s Standard Conjectures on p. 211.
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set theoretically than are many other kinds of space such as differential
manifolds or Riemann surfaces but we will skip all the details here.8

Any finite set of Diophantine equations in several variables defines a
scheme, actually a special case called a spectrum, and general schemes are
gotten by patching together compatible spectra just as a differential manifold
patches together parts of n-dimensional real coordinate space Rn. When a
scheme X is presented as a topological space plus some algebraic struc-
ture then the points correspond to specialized forms of the equations for X.
Notably, given integer polynomial equations the scheme organizes the cor-
responding equations on rational numbers and the corresponding equations
modulo p for each prime number p. The algebra and topology ofX capture
all information about the equations including their solutions—in a form
beautifully revealed by cohomology.9

The simplest useful cohomology for schemes relies on a notion of a coher-
ent sheaf of modules F on a scheme X. Think of one sheaf F as posing one
arithmetic problem all over X. The simplest problem is “choose a number,”
understanding that over some points of X “number” may mean a rational
number, while over other points it will mean an integer modulo p for some
prime number p depending on the point.
To stay with this simple, sketchy example for a moment, let x ∈ X be
some point where “number” means a rational number, and y ∈ X a nearby
point where “number” means an integer modulo 7. Notice that a rational
number n/m has a well-defined integer value modulo 7 so long as the de-
nominator m is not divisible by 7 when expressed in least terms. A local
solution to our problem is a compatible selection of one “number” at each
point in some regionU ⊆ X , where a typical requirement of compatibility is
this: if rational number n/m is chosen at x then the value of n/m modulo 7
must be chosen at y. We must choose “the same” solution at x and y, in this
sense, although of course one is a rational number and the other an integer
modulo 7.
If you think of any sheaf F as posing a problem all over X, then a local
section of F is a choice of compatible solutions at each point in some region
U ⊆ X , while a global section of F is one solution varying compatibly over
all of X. In other words a global section is a local section for the special case
where U = X is the entire scheme. It is often comparatively easy to work
on some problem locally in little regions, while the important question is to
work on it globally.
Cohomology originally described the holes in topological spaces such as
Riemann surfaces [Totaro, 2008, p. 389–91]. The first cohomology group
H 1(S) of a Riemann surface S counts the holes in S by measuring how

8Ellenberg [2008] gives a brief introduction. McLarty [2008] compares two set theoretic
definitions of schemes, using functors or using topological spaces.
9Schemes were created to work with cohomology [McLarty, 2007].
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366 COLIN MCLARTY

much difference it makes to integrate a form on S along different routes. If
the integral of a holomorphic 1-form α along one path in S differs from the
integral of that same form along another path with the same endpoints, then
those two paths together must surround at least one hole. Knowing how
many different results you can get from integrating a single holomorphic
1-form α on S along different paths tells how many holes there are. This
topological feature of S controls a great deal of complex analysis on S via
deep theorems like the Riemann–Roch theorem.
The cohomology of a scheme X measures obstacles to passing from local
to global solutions. Depending on the choice of a “problem” in the form of
a sheaf F onX, there may be ways to patch together local solutions to F over
any two little overlapping regions of X, which are compatible over any three
little jointly overlapping regions, but which give different cumulative results
when they travel around X by different routes—so they are not compatible
all over X at once—sort of the way that integrating one form α along
different paths between the same endpoints on a Riemann surface S can
give different results. Such patching gives local solutions but not global.
The first cohomology group H 1(X,F) measures how many different ways
this can happen in solving the problem F on the space X and so gives some
measure of the “shape” ofX in a way that expresses a great deal of arithmetic
on X. The higher cohomology groups refine this.
As odd as that may sound it gives well organized access to arithmetic
information in concrete cases. Wiles gets his access through coherent co-
homology and other more intricate cohomology theories touched on below.
The sheaves and cohomology groups of interest are consistently very small.
They are continuum sized at most but contain quite complicated informa-
tion. Even before going to curves or higher dimensional spaces, the coho-
mology of 0-dimensional single-point arithmetic schemes already includes
the Galois theory of all algebraic number fields.

§4. Grothendieck’s strategy.
Wewill ignore any set theoretic difficulties. These can be overcome
with standard arguments using universes. [Fantechi et al. 2005,
p. 10]

Logicians complain about careless appeals to set theoretic power such as
invoking the axiom of choice to show the field of rational numbers has an
algebraic closure. It requires choice to show all fields have algebraic closures.
Well, strictly speaking, relative to ZF, it requires the boolean prime ideal
theorem which is weaker than the axiom of choice. Algebra textbooks rarely
go into that subtlety. Anyway the whole issue is a gratuitous complication
for countable fields like the rationals.
It is natural for a logician to suspect this is how large sets come into
algebraic geometry. Perhaps the theory is framed to include arbitrarily large

https://www.cambridge.org/core/terms. https://doi.org/10.2178/bsl/1286284558
Downloaded from https://www.cambridge.org/core. University of Maryland College Park, on 03 Mar 2021 at 16:04:42, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.2178/bsl/1286284558
https://www.cambridge.org/core


WHAT DOES IT TAKE TO PROVE FERMAT’S LAST THEOREM? 367

schemes that are not really of interest?10 But no, that is not the reason. Even
small schemes and sheaves bring in large sets because of a perspective that
ought to interest logicians: Grothendieck’s strategy for the vast complicated
data of arithmetic was to create explicit organizing tools on a scale never
seen before him—or, more accurately, never except in set theory organizing
the entire universe of sets and in category theory. Even to work on a very
small scheme, Grothendieck will place that scheme into artfully selected
large contexts in ways we will describe. Not all number theorists like his
perspective or even care to think about it. They use his and his school’s
theorems.
Grothendieck defined the cohomology of any sheaf of modules F over a
scheme X not by the internal nuts and bolts of F but by the relations of F
to all other sheaves over X. The nuts and bolts come in later, only when and
as they are needed for particular calculations. In his own words he handled
the “prodigious arsenal” of sheaves on X in terms of “its most obvious
structure, which appears so to speak ‘right in front of your face,’ which is
to say the structure of a ‘category’ ” [Grothendieck, 1985, p. P38]. He did
this already in [Grothendieck, 1957] which is one of the most widely cited
papers in mathematics. Given one spaceX he took an array of categories of
related spaces and sheaves on them as one simply and explicitly organized
workspace guiding proofs about X.
He would “approach these categories from a ‘naı̈ve’ point of view, as if
we were dealing with sets” [Grothendieck and Dieudonné, 1971, p. 19]. The
point was not to seek strong set theoretic axioms. To the contrary, Grothen-
dieck aimed to preserve what he likes calling the “childish . . . incorrigible
naı̈veté” of his geometry [1985, p. P32]. But having worked over Bourbaki’s
set theory in draft, bothDieudonné andGrothendieck knew these are proper
classes on naive ZFC foundations and they knew of Tarski’s inaccessibles.
So Grothendieck decided: “to avoid certain logical difficulties, we will ac-
cept the notion of a Universe, which is a set ‘large enough’ that the habitual
operations of set theory do not go outside of it” [Grothendieck, 1971, p. 146].

§5. First steps beyond ZFC. No one would try to understandWiles [1995]
without mastering the standard graduate textbook [Hartshorne, 1977].
Hartshorne’s central Chapter III spends 80 pages on the cohomology used
to prove all the geometric results in the rest of the book. He assumes basic
theorems of homological algebra not normally proven in graduate textbooks
and, suitably to his purpose, he does not prove them either (p. 203). The
only source he specifies for proofs is Freyd’s book Abelian Categories which
vaguely describes its own foundation as “a set theoretic language such as”

10Some wonder if this is what Hartshorne means by the “utmost generality” [1977, p. xiv].
In fact he means dropping the restriction to Noetherian rings, an issue little related to size.
Noetherian rings can be any size and non-Noetherian can be of any infinite size.
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368 COLIN MCLARTY

Morse–Kelley set theory (MK), but goes beyond that as well in at least one
case [Freyd, 1964, pp. 14 and 131]. Subsection 5.1 below compares the
theories NGB, MK, and ZFC+U.
Following Grothendieck’s strategy Hartshorne (p. 207) defines the infinite
series of cohomology groups

H 0(X,F), H 1(X,F), . . . , Hn(X,F), . . .

of a sheaf of modules F over X by the derived functors of the global section
functor. The global section functor Γ goes from the category Mod(X ) of
sheaves of modules on X , to the category Ab of Abelian groups.

Mod(X )
Γ �� Ab

It takes any sheaf of modules F over X to the group Γ(F) of its global
sections.
Derived functors have several equivalent definitions which Hartshorne
uses in combination for particular problems and for theoretical purposes.
The most concise says a derived functor is a universal �-functor [Hartshorne,
1977, p. 206]. The particulars are not as important for us here as the pattern:

1. A �-functor T ∗ on Mod(X ) is an infinite series of ordinary functors
T i : Mod(X ) → Ab, i ∈ N plus natural transformations �i with a
certain relation to exact sequences inMod(X ).

2. A morphism �∗ : T ∗ → S∗ to another �-functor S∗ on Mod(X ) is a
suitable infinite series of natural transformations �i : T i → Si .

3. A �-functor U ∗ onMod(X ) is universal if: for every �-functor T ∗ every
natural transformation �0 : U 0 → T 0 of ordinary functors extends to
exactly one �-functor morphism �∗ : U ∗ → T ∗.

In ZFC the categories Mod(X ) and Ab and the functors between them
are all proper classes. This definition quantifies over the functors. Probably
everything in [Hartshorne, 1977] can be formalized in NGB although NGB
puts limits on such familiar ideas as mathematical induction as we point
out in Subsection 5.1 below. And apart from those limitations, formaliz-
ing this mathematics in NGB requires circumlocution around some natural
collections of proper classes.
This characterization of a universal �-functor transparently defines a cat-
egory with �-functors onMod(X ) as objects and morphisms between them
as arrows. In fact universal �-functors are called universal because they are
universal objects for a certain functor with this category of �-functors as
domain. That is the functor taking each �-functor T ∗ to its zero part T 0. It
is a natural way to think about the subject. But the category of �-functors
and morphisms is a superclass with each object and arrow a proper class.
Such superclass categories are kept implicit throughout the textbook, never
explicit. This is what I mean by circumlocution.
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Superclass categories are explicit in the more advanced Hartshorne [1966].
This book defines �-functoriality in terms of derived categories where each
single morphism is a proper class.11 Hartshorne quantifies over these super-
class derived categories while keeping the set theory utterly unobtrusive as
it should be.
The idea of a category of �-functors is so obvious and unproblematic
that it can safely be left implicit. Yet each category of �-functors is a
superclass of proper classes. Hartshorne’s textbook reasonably elides such
issues. The explicit language of his textbook goes only so far beyond ZFC as
the conservative extension NGB. If universes one day become a less fraught
subject then perhaps the more highly organized functorial tools used in
research will become more accessible to students.
5.1. Comparing extensions of ZFC. Both NGB and MK extend ZFC by
positing a class U containing all sets. Thus U is not itself a set; and with
it they posit many subclasses of U which are also “too big” to be sets and
so are called proper classes. The elements of proper classes are sets, and
no proper class is an element of any collection in NGB or MK. The great
difference is that NGB only allows quantification over sets in defining a class
while MK can also quantify over classes to define a class.
Any modelM of ZFC has a minimal extension to a modelM′ of NGB.
Working outside of the model M we can form the collection |M′| of all
subsets of the domain |M| definable with parameters inM in the language
of ZFC. Of course each set α in |M| defines itself by the formula x1 ∈ α,
so |M| � |M′|. Form the model M′ with this larger domain and the
natural membership relation. Definable subsets which were not already sets
in M become proper classes in M′. Proper classes cannot enter into the
specification of any set or class in NGB soM′ is a model of NGB with no
need to iterate this expansion. Relations among sets are unaltered by this
process so any statement true in a modelM of ZFC remains true of sets in
the corresponding modelM′ of NGB.
Thus NGB is a conservative extension of ZFC and cannot prove consis-
tency of ZFC. Mostowski [1950, p. 113] pinpoints the crucial fact: NGB can
use the classU of all sets to formulate a truth predicate for Gödel numbers of
formulas of ZFC but this truth predicate uses one (existentially) quantified
class variable. So in NGB this predicate does not define a set or class of
Gödel numbers of “true” formulas. Because formulas using this predicate
do not define sets or classes in NGB, mathematical induction does not apply
to them, so NGB can do little with this predicate and notably cannot use
it to prove consistency of ZFC. The MK axioms allow impredicative defi-
nition of classes and so can use this truth predicate to prove consistency of
ZFC.

11Carter [2008] gives a philosophic account of her workusing the same category of fractions
technique in a set theoretically smaller problem of geometry.
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The extension ZFC+U is far stronger since it makes the universeU a set,
which has a powerset P(U ), which has a powerset P2(U ) in turn and so on
through one higher rankP�(U ) for each ordinal number � , more commonly
written as V�(U ). By definition U models ZFC and it is straightforward
to verify that the powerset P(U ) models MK. The subsets of U with lower
rank than U are in fact all elements of U and appear as sets in this model
of MK, while the subsets with the same rank as U appear as proper classes.

§6. Grothendieck universes. We have seen that a standard textbook uses
NGB and hints at superclasses of proper classes. Advanced results cited
in applications use impredicative definitions of classes, which means MK
rather than NGB. Other standard references use an impredicative theory
of superclasses. This is still vastly weaker than ZFC+U but there is no
assignable limit to how far it will go and there is really no reason to keep
track of it. Anyone trying tominimize the logical assumptions of the number
theory can use far less than ZFC in principle. The reason to go beyond ZFC
is to give a safe and simple foundation for the published proofs.
With Grothendieck, we regard universes as a naı̈ve way of treating all
the categories of interest as sets.12 We avoid the distinction of sets from
proper classes at the heart of NGB and MK let alone the distinction of
superclasses from proper classes required to go one rank higher. We avoid
issues of definability which would be invoked to show when variables over
superclasses can be replaced by explicit constructions on proper classes.
Issues of definability may be extremely valuable for some problems but we
can look just at the ones that are, when they are, rather than build certain
ones into the foundations. Our foundation ZFC+U merely says there is a
set U with a few natural closure properties.
Grothendieck’s favorite stated reason for using universes is functor cate-
gories.13 For categories A and B he will form the category BA of all functors
from A to B. We have seen how their use in EGA III lies behind a crucial
step in Wiles [1995, pp. 486–7]. Any one use of this will be only one or a few
ranks higher set theoretically than A and B, depending on exactly how we
define categories in terms of sets. But then we might need yet higher rank
for another functor category C(BA). Grothendieck prefers to treat all these
as sets. A universe U lets him do this. So long as the initial categories are
no bigger than U (and so they are, from the viewpoint of ZFC, no bigger

12See Lurie [2009, pp. 50f.] for a recent mathematical discussion adopting universes, and
noting that as many universes exist as there are strongly inaccessible cardinals. Lurie follows
the common practice of assuming just “enough” successively larger universes without trying
to keep track of how many he wants.
13Grothendieck [1971, pp. 146f.] dryly promises a definitive treatment byClaudeChevalley

and Pierre Gabriel in the year 2000. Until then he offers his own [1957] noting it is very
incomplete even for his purposes.
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than proper classes) then all the finitely iterated functor categories will be
sets in ZFC+U.
At the interface of the original arithmetic application and the general
theory lie set theoretically large sites. The cohomology of topological spaces
handles any topological space T in terms of the set Ouv(T ) of all open
subsets of T . These form the site for that cohomology. They form a set
no bigger than the powerset of the set of points of T . Wiles [1995] works
primarily in that framework, as does Hartshorne [1977] as described in
Sections 3–5 above. But Mumford and Tate [1978] give a beautifully concise
account of how the original arithmetic application used the étale cohomology
of a scheme X which replaces open subsets of X by étale maps X ′ → X .
These collectively form the petit étale site for X. The word “petit” here refers
to an algebro-geometric distinction between gros and petit étale sites. It is
not based on set theoretic size. From the viewpoint of ZFC the petit étale site
of a scheme is not a set but a proper class. Grothendieck points to several
technical tricks to avoid these proper classes and to the inconvenience of
these tricks in practice and affirms this set theoretically large site as the right
one for étale cohomology (SGA 4, p. 307).
The use of set theoretically large sites replacesmany of the sets described in
Sections 3–5 with proper classes and thus replaces most of the proper classes
in those sections with superclasses. It replaces all the superclasses we have
talked about with whatever you like to call collections of superclasses three
ranks above ZFC. Once again, there is no need for any of this if the goal is
to find the weakest logic sufficient for the arithmetic proofs in principle. We
have the different goal of formalizing the proofs as they are published. Once
you go this far above ZFC there is no reason to stop short of simply using
universes.

§7. Deligne and SGA 412 . Deligne [1977] provides the kind of expert in-
troduction to étale cohomology that too few advanced techniques ever get.
Oddly, some people suppose this bookmakes Deligne’s proof of the lastWeil
conjecture independent of universes and of the other SGA.
The book explicitly uses set theoretically large sites [1977, p. 23] and
implicitly uses universes in other ways. The goal is to be “clearer than
SGA 4 . . . but not claim to give a complete proof” (p. 2). For proofs of
such necessary steps as Poincaré duality and the trace formula Deligne cites
his own articles in SGA 4 which explicitly use universes. This book is meant
to give an adequate working background for Deligne’s proof of the last Weil
conjecture based on no more than some cohomology of topological spaces
plus “un peu de foi” (p. 1). But Deligne never suggests faith should replace
proofs in the end.
While Deligne often uses universes he stresses in conversation that they are
a convenience technically eliminable in favor of ZFC. The general theorems
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used in practice can always be given in terms of individual sheaves on small
sites (where “small” means provably existing in ZFC), without ever looking
atwhole categories of sheaves let alone categories of categories of themand so
on. This is a recipe for eliminating universes from any use of Grothendieck’s
cohomology in number theory or anywhere else. Though it is obvious in
practice that it could always be done, it is not done in publications, and
it has never been made a precise metatheorem. Anyone interested in that
should give it a try.
By such means the great cohomological proofs like Deligne [1974], or
Faltings [1983], or Wiles [1995] never need to go beyond ZFC. But in fact
these three as written and published all use Grothendieck’s tools. All three
either cite proofs in EGA and SGA using universes or cite sources that do.
The point is that mathematics is not only technical. Deligne [1998] ex-
plains the practical value of Grothendieck’s high level organization, notably
the value of toposes. He explains that Grothendieck would not describe
single structures but would describe a category forming a workspace around
each one. Grothendieck did not only define a scheme for each very small
geometrically or arithmetically plausible commutative ring, but for all com-
mutative rings:

If the decision to let every commutative ring define a scheme gives
standing to bizarre schemes, allowing it gives a category of schemes
with nice properties. [Deligne, 1998, p. 13].

That category is the easy, natural way to work with schemes. And Grothen-
dieck would not only work with very small geometrically or arithmetically
plausible sheaves on a given scheme, but with the topos of all sheaves on it,
because this led to the right, natural definition of cohomology as a �-functor:

Grothendieck had shown that, given a category of sheaves,14 a no-
tion of cohomology groups results. [Deligne, 1998, p. 16].

In a recent talk Deligne makes the same point about motives: Groth-
endieck does not seek to define motives piecemeal by their nuts and bolts,
but by their intrinsic relations in a category of motives. See [Deligne, 2009,
minute 5].
This is the strategy that produced modern cohomological number theory.
The goal is not at all to posit large categories. The goal is to posit adequate
categories and treat them as sets. The only simple, conceptual way to do
that which is yet known uses universes—and it is eliminable in principle at
the cost of complicating the work.
7.1. One possible strategy for a metatheorem. Perhaps the overall nature
of Grothendieck’s cohomology theory could be retained within ZFC by
replacing universes with “small universes.” Those are sets V� for limit
ordinals � which provably exist in ZFC. They model all of ZFC except the

14I.e., a Grothendieck topos.
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replacement axiom scheme. But in order to work, the limit ordinal � must be
large enough to bound all the required transfinite inductions, notably in the
proof that certain categories have “enough injectives” [Grothendieck, 1957].
If it can be proved in ZFC that for any given site some limit ordinal � suffices
to bound all the inductions needed for the cohomology of that site then by
replacement there would also be suitable � for any set of sites. A single
proof in cohomological number theory never uses more than a set of sites.
So if that difficulty can be overcome then each of these proofs could be given
within ZFC with no perceptible damage to the theoretical organization of
the proof.

§8. Functoriality and weak proofs. Everyone would like to lighten all
proofs in number theory (or any mathematics) as much as they can in any
way that they can. For many number theorists that would include eliminat-
ing functorial tools. All number theorists share Lenstra’s goal of solving
equations while many do not yet share his amusement:
Hendrik Lenstra, in his lecture to the conference, recounted that
twenty years ago he was firm in his conviction that he DID want
to solve Diophantine equations, and that he DID NOT not wish to
represent functors—and now he is amused to discover himself repre-
senting functors in order to solve Diophantine equations! [Mazur,
1997, p. 245, emphasis in the original].

Funny things can be true. The evidence is that functors make arithmetic
easier. Indeed, up to this time, they make Wiles’s proof feasible.
A central functorial tool in Wiles’s proof and a great deal of other number
theory is group cohomology.15 This assigns to each group G , and Abelian
group A acted on by G , an infinite series of cohomology groups

H 0(G,A), H 1(G,A), H 2(G,A), . . .

Washington [1997, p. 103] explains how Wiles’s proof uses primarily these
first three termsH 0–H 2, and he describes their concrete arithmeticmeaning.
At the same time he explains how these groups appear as values of functors
H 0, H 1, H 2 in an infinite series of functors Hn with a strong analogy to
cohomology in topology.
No one who has looked at the proof doubts that this cohomology and
all the rest of Wiles [1995] could be routinely unwound, doing some cur-
rently unknown amount of damage to the theoretical organization, to work
in sets of rank perhaps 7 or 8 over the natural numbers. This would not
require solving any new arithmetic problems but only eliminating some cur-
rently unknown large number of general definitions (which, of course, occur
nested in each other) in cohomology, in favor of their specific applications in

15For the origin of this cohomology see [Mac Lane, 1988] and for more historical detail
Basbois [2009].
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arithmetic. This routine elimination is far weaker thanMacintyre’s program
because it uses far stronger logic. It assumes full comprehension in each
rank and no restriction on the formulas used in inductions.
Macintyre makes a far stronger claim about the cohomology when he says
“there is no evidence at all that Base Change or the Trace Formula has any
essentially higher-order content” [forthcoming, MS pp. 14–15]. Each single
use of these theorems represents rather explicit calculations in arithmetic.
These uses very likely can be either unwound into PA itself, or else justified
in a higher-order conservative extension of PA which does restrict induction
and comprehension perhaps along the lines of [Takeuti, 1978]. That would
complete Macintyre’s argument that FLT has nothing to do with the Gödel
phenomenon—i.e., it has nothing to do with any facts of arithmetic that
actually require axioms stronger than PA.
Macintyre presents evidence but also shows how his claim remains to be
verified by a great deal of further work in arithmetic. This work may be very
enlightening and probably will not be easy. Quite aside from the general
theorems using universes, the most concrete appeals to group cohomology
are on their face several ranks over the natural numbers. The concrete
version of H 1 is a group of equivalence classes of crossed homomorphisms
from a Galois group to its number field. Getting the requisite facts on these
groups into PA or a higher-order conservative extension of PA will be no
routine exercise. It will require serious new arithmetic.

§9. Foundations.
The point of foundations is not to arbitrarily restrict inquiry but

toprovide a frameworkwherein one can legitimately perform those
constructions and operations that are mathematically interesting
and useful.

—Herrlich and Strecker [1973, p. 331].

The really interesting foundational matter is finding genuine unre-
movability of Universes in the integers. In fact, there is presently
no genuine unremovability of Universes for any statement about
sets of limited rank! This is because, e.g., regularity properties
about projective sets of real numbers either can be proved in ZFC
or require large cardinals far beyond Universes.

—Friedman post Apr 8, 1999 on FOM.16

Much of the large apparatus of Wiles [1995] will one day be by-passed in
favor of more direct use of PA. It will not all be easy, and it is impossible to
know now how far it will go. At the same time progress will continue making
the functorial apparatus swifter and more accessible—in Grothendieck’s

16E-mail list FOM, Friedman post titled “Using Universes? The expert speaks

again, Thu Apr 8, 1999” archived at cs.nyu.edu/pipermail/fom.
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terms, more “naı̈ve.” This will not all be easy, and it is impossible to know
now how far it will go. Both those projects will go on, as they are going on,
apart from what any logician thinks of either one. And both will advance
arithmetic.
For now, though, we must look to high levels of organization just as Wiles
did because he wanted to finish his proof. We are led to EGA III and SGA 1
and SGA 4, as Wiles’s sources are. We arrive at universes.
We want more than one thing one from foundations. We study what logic
is legitimate in mathematics. We seek to confirm or refute the genuine unre-
movability of various strong set theoretic axioms for statements about sets of
limited rank. Without defending Friedman’s sweeping claim about this I en-
tirely agree that cohomological number theory offers no such unremovability
of universes. I doubt anyone interested in the subject ever thought it would.
Yet this number theory presents a large body of legitimate, interesting and
useful constructions and operations using universes—if we can agree that
everything Wiles [1995] uses in fact is legitimate, interesting, and useful.
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Nice Sophia-Antipolis, 2009.
[2008] J. Carter, Categories for the working mathematician: Making the impossible possi-

ble, Synthese, vol. 162 (2008), pp. 1–13.
[1997] G. Cornell, J. Silverman, and G. Stevens (editors), Modular forms and Fermat’s

Last Theorem, Springer-Verlag, 1997.
[1974] P. Deligne,La conjecture deWeil I,Publications Mathématiques. Institut de Hautes
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Modular functions of one variable, II, Lecture Notes in Mathematics, vol. 349, Springer-
Verlag, New York, 1973, pp. 143–316.
[2008] J. Ellenberg, Arithmetic geometry, Princeton companion to mathematics (T. Gow-

ers, J. Barrow-Green, and I. Leader, editors), Princeton University Press, 2008, pp. 372–383.
[1983] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inven-
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