The Kruskal Tree Theorem Exposition by William Gasarch

1 Introduction

In 1960 Joe Kruskal [1] proved that the set of trees under the minor ordering is a well quasi order (wqo). (We will define wqo later.) In 1963 Nash-Williams [2] provided a simpler proof. This document is an exposition of the proof of Nash-Williams.

2 Well Quasi Orders

Definition 2.1 A set together with an ordering (X, \preceq) is a well quasi ordering (wqo) if for any sequence x_1, x_2, \ldots there exists i, j such that i < j and $x_i \preceq x_j$. We call this i, j an uptick

Note 2.2 If (X, \preceq) is a wqo then its both well founded and has no infinite antichains.

Lemma 2.3 Let (X, \preceq) be a wqo. For any sequence x_1, x_2, \ldots there exists an infinite ascending subsequence.

Proof: Let x_1, x_2, \ldots , be an infinite sequence. Define the following coloring: COL(i, j) =

- UP if $x_i \preceq x_j$.
- DOWN if $x_j \prec x_j$.
- INC if x_i and x_j are incomparable.

By Ramsey's theorem there is either an infinite homog UP-set, an infinite homog DOWN-set or an infinite homog INC-set. We show the last two cannot occur.

If there is an infinite homog DOWN-set then take that infinite subsequence. That subsequence violates the definition of well quasi ordering.

If there is an infinite homog INC-set then take that infinite subsequence. That subsequence violates the definition of well quasi ordering.

We now redefine wqo.

Definition 2.4 A set together with an ordering (X, \preceq) . is a *well quasi ordering* (wqo) if one of the following equivalent conditions holds.

- For any sequence x_1, x_2, \ldots there exists i, j such that i < j and $x_i \leq x_j$.
- For any sequence x_1, x_2, \ldots there exists an *infinite* ascending subsequence.

3 If X and Y are word then $X \times Y$ is word

Definition 3.1 If (X, \leq_1) and (Y, \leq_2) are word then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 y$ and $x' \leq_2 y'$.

Lemma 3.2 If (X, \leq_1) and (Y, \leq_2) are work then $(X \times Y, \leq)$ is a work (\leq defined as in the above definition).

Proof: Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$. Define the following coloring: COL(i, j) =

- UP-UP if $x_i \preceq x_j$ and $y_i \preceq y_j$.
- UP-DOWN if $x_i \preceq x_j$ and $y_j \preceq y_i$.
- UP-INC if $x_i \preceq x_j$ and y_j, y_i are incomparable.
- DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined similarly.

By Ramsey's theorem there is a homog set in one of those colors. If the color has a DOWN in it then there is an infinite descending sequence within either x_1, x_2, \ldots , or y_1, y_2, \ldots which violates either X or Y being a wqo. If the color has an INC in it then there is an infinite antichain within either x_1, x_2, \ldots , or y_1, y_2, \ldots which violates either X or Y being a wqo. Hence the color must be UP-UP. This shows that there is an infinite ascending sequence.

4 If (X, \preceq) is a wqo then 2^{finX} is a wqo

Theorem 4.1 Let (X, \preceq) be a well quasi order. Let $2^{\text{fin}X}$ be the set of FINITE subsets of X. We DEFINE an order \preceq' on $2^{\text{fin}X}$:

 $A \preceq' B$ if there is an injection f from A to B such that $x \preceq f(x)$.

 $(\emptyset \preceq' B \text{ is always true: use the empty function and the condition holds vacuously.}) Then <math>(2^{\text{fin}X}, \preceq')$ is a well quasi order.

Proof:

Throughout 'smallest' means smallest CARDINALITY of a set.

Assume, BWOC, that $(2^{\text{fin}X}, \preceq')$ is a NOT a wqo.

Let A_1 be the smallest set that begins a bad sequence.

Let A_2 be the smallest set that is the second element of a bad sequence that begins with A_1 For all $i \ge 3$

Let A_i be the smallest set that is the *i*th element of a bad sequence that begins with $A_1, A_2, \ldots, A_{i-1}$. Note that

$$A_1, A_2, A_3, \ldots$$

is a minimal bad sequence.

None of the A_i 's can be empty since its a bad sequence.

Let B_i be A_i minus an element.

The elements are picked arb, however lets call the set of such elements MINUS.

Let $\mathcal{B} = \{B_1, B_2, \ldots\}.$

Claim: \mathcal{B} with the order \preceq' is a wqo

Proof of Claim: Assume, BWOC, that there is a bad sequence:

 B_{i_1}, B_{i_2}, \ldots

We can assume that i_1 is the smallest index that appears (take the smallest one that appears and start there). Aside from that we DO NOT know anything about the order of the i_j 's.

Look at the sequence

 $A_1, A_2, \ldots, A_{i_1-1}, B_{i_1}, B_{i_2}, \ldots$

(NOTE we DO NOT KNOW, NOR DO WE THINK that $i_1 < i_2 < \cdots$) We show this is a BAD sequence.

- 1. Since A_1, A_2, \ldots is a bad sequence there will be no uptick in the first $i_1 1$ elements of the sequence.
- 2. Since B_{i_1}, B_{i_2}, \ldots is a bad sequence there will be on uptick in the elements after A_{i_1-1} .
- 3. Assume, BWOC, that we have $i < i_j$ and $A_i \preceq' B_{i_j}$. Take the injection from A_i to B_{i_j} and view it as an injection from A_i to A_{i_j} . Hence $i < i_j$ and $A_i \preceq A_{i_j}$. Hence we have an uptick in the BAD SEQUENCE A_1, A_2, \ldots This is a contradiction.

SO

$$A_1, A_2, \ldots, A_{i_1-1}, B_{i_1}, B_{i_2}, \ldots$$

is a bad sequence. Look at its i_1 element. Recall how A_{i_1} was defined: Let A_{i_1} be the smallest set that is the i_1 th element of a bad sequence that begins with $A_1, A_2, \ldots, A_{i_1-1}$. BUT we are now looking at a bad sequence that begins with

$$A_1, A_2, \ldots, A_{i_1-1}$$

with i_1 th element B_{i_1} , and $|B_{i_1}|$ is A_{i_1} with one element missing so it is SMALLER. This is a contradiction.

So \mathcal{B} with \leq' is a wqo.

End of Proof of Claim

SO \mathcal{B} under \leq' is a wqo MINUS under \leq is a subset of a wqo so its a wqo. So $\mathcal{B} \times MINUS$ is a wqo. SEQONE: A_1, A_2, \ldots , View this as SEQTWO: $(B_1, b_1), (B_2, b_2), \ldots$ Where $A_i = B_i \cap \{b_i\}$. Since SEQTWO has an uptick, SEQONE has an uptick.

5 The Kruskal Tree Theorem

Now that we are familiar with wqo's and minimal bad sequence arguments we can sketch the proof of the Kruskal Tree Theorem.

Theorem 5.1 Let (X, \leq) be a wqo. Let TREEW be the set of trees where the nodes are labeled with elements of X. Xe define $T \leq T'$ if you can remove vertices, remove edges, contract edges, until you get a tree T" such that the vertices of T are \leq their analogs in T'. TREEW under \leq is a wqo

Proof:

Assume, BWOC that the set of trees under minor is NOT a wqo.

Let T_1, T_2, \ldots be a MINIMAL BAD SEQUENCE defined in the usual way.

None of the trees is the empty tree, so they all have a root.

Assume the root of T_i has degree d_i . For each T_i remove the root to obtain d_i trees $T_{i,1}, \ldots, T_{i,d_i}$ Let X be the set of all the $T_{i,j}$.

By the usual argument (X, \preceq) is wqo.

View T_i as $(\{T_{i,1},\ldots,T_{i,d_i}\}, \text{root of } T_i\} \in X \times X$.

Hence T_1, T_2, \ldots is a sequence of elements of $X \times X$ which is a wqo, so there is an uptick.

References

- J. Kruskal. Well-quasi-ordering, the tree theorem and Vazzsonyi's Conjecture. Transactions of the American Math Society, 95:210–225, 1960.
- [2] C. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the Cambridge Philosophical Society, 59:833–853, 1963.