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Abs t r ac t .  A polynomial time computable function h : ~U* --+ ,U* whose 
range is the set of tautologies in Propositional Logic (TAUT), is called a 
proof system. Cook and Reckhow defined this concept in [5] and in order 
to compare the relative strength of different proof systems, they consid- 
ered the notion of p-simulation. Intuitively a proof system h p-simulates 
a second one h' if there is a polynomial time computable function ~, 
translating proofs in h t into proofs in h. A proof system is called opti- 
mal if it p-simulates every other proof system. The question of whether 
p-optimal proof systems exist is an important one in the field. Krajf~ek 
and Pudl~k [13,12] proved a sufficient condition for the existence of such 
optimal systems, showing that if the deterministic and nondeterministic 
exponential time classes coincide, then p-optimal proof systems exist. 
They also gave a condition implying the existence of optimal proof sys- 
tems (a related concept to the one of p-optimal systems). In this paper 
we improve this result obtaining a weaker sufficient condition for this 
fact. We show that if a particular class of sets with low information 
content in nondeterministic double exponential time is included in the 
corresponding deterministic class, then p-optimal proof systems exist. 
We also show some complexity theoretical consequences that follow from 
the assumption of the existence of p-optimal systems. We prove that if 
p-optimal systems exist then the class UP (and some other related com- 
plexity classes) have many-one complete languages, and that many-one 
complete sets for NP n SPARSE follow from the existence of optimal 
proof systems. 

1 I n t r o d u c t i o n  

A systematic s tudy of the complexity of proof systems for Proposit ional  Logic, 
was s tar ted some t ime ago by Cook and Reckhow [5]. They were interested 
in studying the shortest  proofs of propositional tautologies in different proof  
systems, and defined the abstract  notion of proof  system in the following way: 
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Defini t ion 1. Let TAUT be the set of all Boolean tautologies (written in a fixed 
alphabet 27). A propositional proof system (or just proof system) is a polynomial 
time computable function h : 27* -+ 27* whose range is TAUT)  

For example the function h defined as 

{iv if w = (iv, v) and v is a resolution proof of iv, 
h(w) = x V 5 otherwise. 

is a proof system. 
If h(w) = iv we say that w is a proof of iv in h. Observe that in the given 

definition a proof system h is not required to be polynomially honest. For a 
tautology iv, the shortest proof of iv in h, can be much longer than iv. 

A polynomially bounded proof system h is a proof system in which every 
tautology has a short proof. More formally, there is a polynomial q such that for 
every iv E TAUT, there is a string w of tength bounded by q(]iv]) with h(w) = iv. 

It is not known whether polynomially bounded proof systems exist, on the 
other hand, many concrete proof systems have been shown not to be polyno- 
mially bounded (see for example [5],[16]). There are different motivations for 
studying the complexity of proof systmes. On the one hand, there are close re- 
lations between proof-complexity and Bounded Arithmetic (see e.g. [11]), also 
concrete proof systems like for example resolution or Frege systems are inter- 
esting in their own right, and recently, important connections between these 
systems and Boolean circuit complexity have been established. Another main 
motivation for the study of proof systems comes in fact from the following rela- 
tion between the NP versus co-NP question and the existence of polynomially 
bounded systems. 

T h e o r e m  2.  [5] N P  = co-NP if and only if poIynomially bounded proof systems 
exist. 

This result started the so called Cook-Reckhow Program: a way to prove that 
NP is different from co-NP might be to study more and more powerful concrete 
proof systems, showing that they are not polynomially bounded, until hopefully 
we have gained enough knowledge to be able to separate NP from co-NP (see 

[31). 
In order to compare the relative powers of two different proof systems, the 

notion of polynomial simulation (or p-simulation) was introduced in [5]. 

Def in i t ion  3. Let h and h' be two propositional proof system. We say that h 
simulates h' if there is a function 7 that is polynomially bounded in length and 
translates proofs in h' into proofs in h. In other words, there is a polynomial 
p such that for every x 17(z)[ < p(lxl), and for every tautology iv and every 
proof w of iv in h', 7(w) is a proof of iv in h. If in addition 7 is computable in 
polynomial time, we say that h p-simulates h'. 

x The original definition allows in fact the use of different alphabets for the domain 
and different languages for the range of h, but for the purposes of this paper the 
given definition suffices. 
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Observe that p-simulation is a stronger notion than simulation. It is easy to 
see that simulation and p-simulation are reflexive and transitive relations. It is 
also clear that if a proof system h is not polynomially bounded, and h simulates 
another system h ~, then h' cannot be polynomially bounded. Cook and Reckhow 
used p-simulation in order to classify proof systems in different classes with 
polynomially related derivation strength. 

The notion of simulation between proof systems is closely related to the no- 
tion of reducibility between problems. Continuing with this analogy, the notion of 
a complete problem would correspond to the notion of an optimal proof system. 

Def in i t ion  4. A proof system is optimal (p-optimal) if it simulates (p-simulates) 
every other proof system. 

An important open problem is whether optimal proof systems exist [3]. Ob- 
serve that if this were the case, then in order to separate NP from co-NP it would 
suffice to prove that a concrete proof system is not polynomially bounded. 

Kraji~ek and Pudlgk have given sufficient conditions for the existence of p- 
optimal and optimal proof systems. 

T h e or e m  5. [13,12] 

If  NE = co-NE then optimal proof systems exist. 
If  E = NE then p-optimal proof systems exist. 

On the other ha~d, to our knowledge, only weak complexity-theoretic conse- 
quences of the existence of optimal proof systems were known. 2 

In the present paper we improve the mentioned result from [13, 12] by weak- 
ening the conditions that are sufficient for the existence of optimal and p-optimal 
proof systems. We show in Section 3 that if the deterministic and nondetermin- 
istic double exponential time complexity classes coincide (EE = NEE) then 
p-optimal proof systems exist, and that NEE -- co-NEE is sufficient for the ex- 
istence of optimal proof systems. In fact we give a probably weaker sufficient 
condition, using a special kind of sets with small information content. Let us say 
that a set is almost tally, if its words belong to the set 0* 10". We show that if 
the class of almost tally sets in NEE is included in EE, then p-optimal proof 
systems exist, and that optimal proof systems exist if almost tally sets in NEE 
belong also to co-NEE. 

On the other side, we also show some consequences from the existence of 
optimal and p-optimal proof systems, proving completeness results for the com- 
plexity classes UP and NP N SPARSE, that follow from the existence of such 
proof systems. Since complete problems for these classes have been unsuccess- 
fully searched for in the past, the results give some evidence of the fact that 
optimal proof systems might not exist. At the same time they strengthen the 
connection between the notions of optimal proof systems and complete sets. 

2 From [14] follows that if optimal proof-systems exist, then the class of disjoint pairs 
in NP has a complete pair under a weak reduction. 
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The presentation is organized as follows: In Section 4 we show that if p- 
optimal proof systems exist, then the class UP (unambiguous NP) of problems 
in NP that can be accepted by nondeterministic polynomial time machines with 
at most one accepting path for every input [17], has complete problems under 
the logarithmic space many-one reductions. The existence of complete problems 
for UP has been studied in [7], where the authors show the existence of a rel- 
ativization under which this is not possible. Considering that p-optimal proof 
systems exist, we also show the existence of complete sets for related promise 
classes like FewP. We also consider the weaker hypothesis of the existence of op- 
timal proof systems, and show that the completeness results for the mentioned 
classes still hold for nonuniform many-one reductions. Finally in Section 5 we 
prove that optimal proof systems imply the existence of complete problems for 
the class NP n SPARSE for many-one logarithmic space reductions. The ques- 
tion of the existence of such sets is subtle and has been intensively investigated. 
Although many-one complete set in NP (1 SPARSE are not known, Hartmanis 
and Yesha prove in [8] that there is a sparse set in NP that is Turing complete 
for NP f3 SPARSE, (in fact the given set is tally) and ask whether the result 
can be improved to the many-one case. Hartmanis has also shown that the set 
of satisfiable formulas with small Kolmogorov complexity SAT f3 K[log, n 2] is 
Turing complete for NP M SPARSE [6], but the completeness of this set under 
many-one reductions would imply unexpected consequences in the exponential 
time hierarchy. More recently SchSning has proven that there are sets that are 
complete for this class under many-one randomized reductions [15]. 

2 B a s i c  N o t i o n s  

We assume some familiarity with the standard results and notions about deter- 
ministic and nondeterministic complexity classes. For undefined complexity the- 
ory notions, and the definition of standard complexity classes, we refer the reader 
to the standard books in the area like [2]. We will use a pairing function ( , )  that 
is polynomial time computable and invertible. For a set A, ~(A) = {L I L C_ A} 
represents the power set of A. Let E and EE, denote the time complexity classes 
DTIME(2 °(n)) and DTIME(2°(2")), respectively, and NE, NEE their nondeter- 
ministic counterparts. 

In the introduction we defined the notion of proof system. The next lemma 
shows that for every set of tautologies that is polynomial time computable, 
there is a proof system in which the tautologies of the set have short proofs, and 
moreover, the proof can be found easyly. 

L e m m a  6. If  T fi TAUT and T E P, then there exists a proof system h and a 
function t E FP that produces proofs in h for every tautology in T. That is, for 
e ,ery  T ,  = 

Proof. Let h t E FP be a proof system. We can define a new proof system h as 
follows: 
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h'(v) if w = 0v, 
h(w) = v i f w = I v  a n d v E T ,  

x V 5 otherwise. 

Clearly, h is a proof system. The flmction t producing proofs in h for the elements 
of T is just t(v) - lv. 

In the definitions of proof systems and p-optimality we allowed both func- 
tions, the proof system h and the translation function, to be computable in 
polynomial time. The following lemma shows that the most part of the com- 
putational complexity of both functions can be concentrated in one of them, 
whereas the other function may be computed, for example, in logarithmic space. 
To formulate the lemma, let us say that a proof system h is logspace-optimal if 
it simulates in logarithmic space every other proof system h ~, which means that 
there is a logspace computable function 7 such that h(7(w)) = h~(w) for every 
word w. 

L e m m a  7. The following statements are equivalent 

1. A p-optimal polynomial time computable proof system exists. 
2. A Iogspace-optimal polynomial time computable proof system exists. 
3. A p-optimal logspace computable proof system exists. 

Proof. Clearly, 2 and 3 imply 1. 
To obtain P from 1 let h be a p-optimal polynomial time computable proof 

system, and let g be defined by 

l h(w') if w = (M, Ot, v), and M is a deterministic Turing trans- 
= ducer which on input v outputs w t in at most l steps, 

g(w) L x V -~x else. 

Clearly, g is polynomial time computable. We show that g is logspace-optimal. 
Let h t be a proof system. By assumption, there is a polynomial time com- 
putable translation function 7 such that h(v(w)) = h~(w) for any w. Let M 
be a deterministic Turing transducer computing 3' with time bounded by a poly- 
nomial p(n). It's easy to see that the logspace computable function 7 ~ with 
V'(w) = (M, 0 p(Iwl) , w) translates proofs in h ~ into proofs in g. 

We now show that the existence of a p-optimal proof system h implies a 
logspa~e computable p-optimal proof system f .  Let M be a polynomial time 
machine computing h. Let f (w)  = ~ if w encodes a complete computation of 
M (given by the sequence of configurations) with output ~, let f (w) = x V 
~x otherwise. Choosing a suitable encoding f is logspace computable. Also f 
p-simulates h. Therefore f p-simulates every proof system. 
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3 A sufficient condit ion 

We give now a sufficient condition for the existence of optimal proof systems, 
based on almost tally sets in double exponential time. 

T h e o r e m  8. 

If  NEE A ~3(0"10") C EE then there exists a p-optimal proof system. 
/ f  NEE ~ ~(0"10") C co-NEE then there exists an optimal proof system. 

Proof. Let Mt, 17/2, /?/3, . . .  be some standard enumeration of deterministic 
Turing transducers with binary input alphabet such that there is an universal 
Turing machine which is able to simulate k steps of Mi in (ik) 2 time for any 
k _> 0 (dearly, such enumerations exist). Now define the language 

T = (0Jl0 i I for any word w of length at most 22~ , where n = i + j  + 1: if 
Mi stops on input w in at most 22" steps, Mi outputs a tautology}. 

It is not hard to see that T E co-NEE. Assuming NEEA ~(0"10") C_ EE we 
also have co-NEE N ~3(0"10") C_ EE and therefore T E EE. Therefore there is a 
deterministic Turing machine MT which decides T in time 2 c'2" for some c > 0. 

We describe a p-optimal proof system h: 

On input (0Jl0i,0S,w) examine if s > 22~ and ]w I <_ 22z, where 1 = 
i + j  + 1, and test whether MT accepts 0Jl0 i in at most s steps. If this 
is the case, output Mi(w)  if Mi stops after at most 22x steps on input w. 
(If some other case applies, output some fixed tautology). 

Clearly, 0Jl0 i E T implies that the Turing machine Mi on input w outputs 
a tautology if the computation needs at most 22z steps. Therefore h(Z*) C 
TAUT. Also, h is computable in polynomial time. We have to show that h p- 
simulates every other proof system. Let g be a proof system computed by the 
deterministic Turing transducer Mi with time bound n k + k. A proof w for 
g is translated into the proof w ~ = (0Jl0i,0S,w) where s = 2 c'2~+i÷1 , and j = 
max(0, [loglog Iw] k +k] - i  - 1). By the construction of h, we have h(w')  = g(w). 
We just have to show that the translation w ~ w' is computable in polynomial 
time. Clearly, this is the case if the length of 0 s is polynomially bounded by twl- 

Now observe that s = 2 c'2~+j+~ < 2 c'2i+l"2L°gl°gI~lk+~ = (]w] 1¢ + k) c'2i+1 which is 
polynomial in ]w]. 

Similar considerations can be used to show the second part of the theorem. 

If in the previous proof we replace each occurrence of the number 2 by some 
arbitrary constant d (and log by lOgd) we obtain that already NTIME(2 °(d")) N 
~(0"10") C DTIME(2°(d~)) for some d > 0 implies the existence of a p- 
optimal proof system (a similar result follows for optimal proof systems).3 How- 
ever, the proof seems not to translate directly to a further exponential level as 

222°+~°gl°g~°g~ ~t n 0(1) for any real c > 0. 

This improvement emerged from an email discussion with S. Ben-David. 
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4 C o m p l e t e  p r o b l e m s  f o r  U P  

In this and the next sections we prove that the existence of optimal proof systems 
imply the existence of complete sets in certain promise complexity classes. The 
machines computing the sets in these classes can not be guaranteed to keep 
the condition of the class for all possible inputs, and because of this, complete 
problems for these classes are not known. We will first prove the existence of 
complete sets for UP under many-one polynomial time reductions, considering 
the existence of p-optimal proof systems. Later we will strengthen this result to 
logarithmic space reductions. 

Define the set CAT containing descriptions of machines that are categorical, 
i.e., have at most one accepting path for all inputs up to a given length. 

CAT = {(M, 0 t, O n) I M is a nondeterministic Turing machine and for every 
input x, Ix] < n, M has at most one accepting path of length _< l}. 

Clearly, CAT E co-NP and since TAUT is co-NP complete for polynomial 
time many-one length-increasing reductions, there is such a function f E FP 
reducing CAT to TAUT. 

For every fixed nondeterministic Turing machine M and every fixed mono- 
tone polynomial q, the set 

CATM,q = {(M, 0 q(n), O n) I n >_ 1} n CAT, 

is in P because it is either finite or the set of all such triples. Also the image 
of CATM, q under f ,  is in P; in order to test whether a given formula ¢ belongs 
to f (CATM,q)  it suffices to generate the words of CATM, q up to a given length, 
and check whether the image of one of these words after applying f coincides 
with ¢. 

Let ~OUJ,n denote the formula f ( ( M ,  0 l, On)). Clearly, if the machine M is 
categorical and its running time is bounded by q, then for every n, ~OM, q(n),n is 
a tautology. 

The following lemma intuitively says that under the hypothesis of the ex- 
istence of p-optimal proof systems, for every categorical machine M there is a 
polynomial time computable function producing proofs of the categoricity of M. 

L e m m a  9. Let h E FP be a p-optimal proof system. For every categorical ma- 
chine M with running time bounded by a polynomial q, there is a function 
gM,q E FP such that for  every 1 E N, gM,q(O t) produces an output w and 
h(w) = (f)M,q(l),l. 

Proof. Let M be a categorical machine polynomially time bounded by a poly- 
nomial q. Every formula in the set f(CATM, q) is a tautology. As we have seen 
this set is in P and by Lemma 6 there is a proof system h ~ and a function t E FP 
that produces short proofs in h t for the tautologies in f (CATM,q).  Formally, for 
every tautology ~OM, q(l),l E f ( CAT M, q), hl ( t(~OM,q(l),l ) ) = ~OM,q(l),l. 
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Since h is p-optimal, it p-simulates h ~. This means that there is a function ~/E 
FP, translating proofs in h ~ into proofs in h, and for every tautology ~M,q(t),z E 
f (CAT M,q) we have h(~/(t(~M,q(1),l) ) ) = (~M,q(1),l. 

The claimed function gM,q on input 0 t computes the formula ~M,qff)J = 
f ( ( M ,  Oq(l),Ol)), and applies functions t and ~/to it. Clearly gM,q ~ FP. 

We can now prove that p-optimal proof systems imply the existence of com- 
plete sets for UP. 

T h e o r e m  10. I f  p-optimal proof systems exist then there are sets that are com- 
plete for UP under polynomial time many-one reductions. 

Proof. Let h be a p-optimal proof system and consider the set 

A = {(M, Ot,w,x) [ M  is the description of a NDTM and h(w) = ~M,l,l$l 
and M accepts x in l steps or less}. 

The set A is clearly in UP since h(w) ---- ~M,/,[X[ means that this formula is a 
tautology, and therefore for every input of length smaller or equal than ]xl (and 
in particular for x), M has at most one accepting path of length l. 

For the hardness part, let B be a set in UP, accepted by a machine M in 
time bounded by a polynomial q. W.l.o.g. we can suppose that for every n, 
q(n) <_ q(n + 1), and that on any input x, every computation path of M halts 
after exactly q(ix]) steps. Consider the function gi ,q  E FP whose existence was 
proved in the above lemma. The function A E FP defined for every x E Z* as 

A(x) = (M, 0 q(Ixl), gM, q(ol=l), x) 

many-one reduces B to A since h(gM, q(OlXl)) = ~M,q(l~l),lx I . 

To see that p-optimal proof systems also imply the existence of logspace 
many-one complete problem for UP, we show that the construction in the proof 
of Lemma 9 can be modified so that gM,q is logspace computable. In fact, by 
the same observations it can be seen that even weaker reductions are possi- 
ble. Remember gM,q(O l) -~ ~/(t(f((M, 0 q(l) , 01)))) where f is a length-increasing 
reduction from CAT to TAUT, t(x) = l x  is the fimction from the proof of 
Lemma 6, and ~/is a function translating proofs in a proof system h ~ into proofs 
in h, whose existence is guaranteed by the p-optimality of system h. Clearly, 
(M, 0 q(t) , 0 z) can be computed in logarithmic space from 0 ~, and the function t 
is logspace computable. Also f can be chosen to be a logspace computable (and 
length-increasing) many-one reduction from CAT to TAUT. By Lemma 7 we 
can assume h to be logspace-optimal, and therefore we can also assume 7 to be 
logspace computable. As the composition of logspace computable functions is 
again logspace computable we obtain: 

T h e o r e m  11. I f  p-optimal proof systems exist then there are sets that are com- 
plete ]or UP under logarithmic space many-one reductions. 
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The completeness result for UP can be extended to the related complexity 
classes FewP and Few as stated in the next theorem. The classes FewP and Few 
were defined in [1] and [4] as a generalizations of the class UP. For space reasons 
we omit the definition of these classes and the proof of the next theorem. 

T h e o r e m  12. I f  p-optimal proof systems exist then there are sets that are com- 
plete under logarithmic space many-one reductions for the classes FewP and 
Few. 

Let us mention at this point that in [7] an oracle is constructed under which 
the class UP does not have many-one complete sets. In [9] this result is improved 
from many-one to Turing reducibility, and it is also shown that under certain 
relativizations the class FewP does not have Turing complete sets. Since the 
proofs in this paper relativize, we can state the following corollary: 

Coro l la ry  13. There exists a relativization under which p-optimal proof sys- 
tems do not exist. 

If we only consider the existence of optimal proof systems (instead of p- 
optimal systems), then we can prove a version of the above result for nonuniform 
reductions. Intuitively a set is polynomial time nonuniformly many-one reducible 
to a second one, if the reduction function is not necessarily in FP, as in the usual 
polynomial time reductions, but it is computed by a family of polynomial size 
circuits [10]. 

Due to space reasons we omit the formal definition of non-uniform reductions 
as well as the proof of the next theorem. 

T h e o r e m  14. I f  optimal proof systems exist then there are sets that are com- 
plete for UP under nonuniform polynomial time many-one reductions. 

As expected, the many-one completeness results for Few and FewP from 
Theorem 12 become completeness results for nonuniform many-one reductions 
if only the existence of optimal proof systems is considered. 

5 C o m p l e t e  sets  for N P  N S P A R S E  

We prove now that there are many-one complete sets for NP fq SPARSE under 
the hypothesis of the existence of optimal proof systems. The proof follows the 
same lines as the previous one for complete sets in UP, but in this case we do 
not need p-optimaiity, and the existence of optimal proof systems suffices. 

Let us define the set SP containing descriptions of nondeterministic machines 
that do not accept too many strings up to a given length: 

SP = {(M, 0 ~, 0 n) I M is a nondeterministic Turing machine and there are 
at most t pairs (x~,yt), lxil < n, lY~I < t, such that xi ~ xj for i ~ j ,  
and Yi is an accepting path of M on input x/}. 
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It is not hard to see that SP E co-NP, and therefore SP is polynomial-time 
many-one reducible to TAUT. Let f E FP be a length increasing function that 
reduces SP to TAUT. 

LetMbe a fixed nondeterministic Turing machine with running time bounded 
by a polynomial q, that for every length l accepts at most q(1) words of length 
I. The set 

SPM, q = {(M, 0 q(n), O n) I n _> 1} (3 SP, 

is in P, and the image of SP~,I,q under f ,  is also in P; 
Let ~MJ,n denote the formula .f((M, 0 t, On}). Clearly, if the machine M runs 

in time bounded by q and accepts a q-sparse set of inputs, then for every n, 
(OU, q(n),n is a tautology. 

The following lemma is analogous to Lemma 9, and says that in an optimal 
proof system, a proof of the fact that a machine accepts a sparse language up to 
a given length, can be polynomially bounded. The proof of the lemma follows 
the same lines as the one for Lemma 9 and it is omitted. 

L e m m a  15. Let h E FP be a p-optimal proof system. For every nondetermin- 
istic Turing machine M with running time bounded by a polynomial q, and such 
that for every n E N, M accepts at most q(n) words of length n, there is a poly- 
nomial r such that]or every I e N, there is a string w E ~*, with Iwl < r(1) and 
h(w)  -~- ~M,q(l),l. 

We can now prove that optimal proof systems imply the existence of complete 
sets for NP A SPARSE. 

T h e o r e m  16. I f  optimal proof systems exist then there are sets that are com- 
plete for NP A SPARSE under logarithmic space many-one reductions. 

Proof. Let h be an optimal proof system, and let S be the set 

S = {o(M'l'J'n)lx I M is the description of a NDTM which accepts x in I steps 
or less, Ix] = n, and there is a string w, Iwl < j, such that h(w) = ~M,l,n}. 

S belongs clearly to NP. Also, the number of string x such that 0 (M,l,j,n) lx  E S is 
bounded by l, since 0 {M,lJ,n) lx E S implies that CM,t&l is a tautology. Therefore 
for every length n there are at most n words of this length in S. This proves 
that S is sparse. 

In order to see that S is hard for the class, let S ~ be a set in NP ('1 SPARSE, 
accepted by a nondeterministic Turing machine M with time bounded by a 
polynomial q, and with density also bounded by q. By Lemma 15 there is a 
polynomial r such that for every t e N, there is a string w with ]w] < r(l) and 
h(w) = CM,a(t),l. The reduction from S t to S is given by the function 

)~( X) = o( M'q([~])'r(]z])'lx]) lX. 

Observe that this function is computable in logarithmic space, one-to-one, length 
increasing and also invertible in logarithmic space. 
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Let  us mention at this point tha t  contrary to the UP case, there is no known 
relativization under which the class NP gl SPARSE does not have many-one 
complete sets. For this reason, and considering the existing results on sparse 
sets mentioned in the introduction, we feel tha t  Theorem 16 only provides a 
weak consequence of the existence of optimal proof systems. 
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