The Muffin Problem

Guangi Cui - Montgomery Blair HS
John Dickerson- University of MD
Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD
Erik Metz - University of MD
Jacob Prinz-University of MD
Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD
Sung Hyun Yoo - Bergen County Academies (in NJ)

How it Began

A Recreational Math Conference (Gathering for Gardner) May 2016

I found a pamphlet:

The Julia Robinson Mathematics Festival:

A Sample of Mathematical Puzzles

Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?

Five Muffins, Three Students, Proc by Picture

Person	Color	What they Get
Alice	RED	$1 + \frac{2}{3} = \frac{5}{3}$
Bob	BLUE	$1 + \frac{2}{3} = \frac{5}{3}$
Carol	GREEN	$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$

Smallest Piece: $\frac{1}{3}$

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$. Is there a procedure with a larger smallest piece?

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$. Is there a procedure with a larger smallest piece? YES WE CAN!

Five Muffins, Three People-Proc by Picture

Person	Color	What they Get
Alice	RED	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Bob	BLUE	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Carol	GREEN	$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$

Smallest Piece: $\frac{5}{12}$

Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece?

Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece? NO WE CAN'T!

Five Muffins, Three People–Can't Do Better Than $\frac{5}{12}$

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.

(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$. (Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: Someone gets \geq 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}$$
 Great to see $\frac{5}{12}$

General Problem

f(m, s) be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide m muffins among s students so that everyone gets $\frac{m}{s}$.

We have shown $f(5,3) = \frac{5}{12}$ here.

We have shown f(m, s) exists, is rational, and is computable using a Mixed Int Program (in paper).

Amazing Results!/Amazing Theorems!

- 1. $f(43,33) = \frac{91}{264}$.
- 2. $f(52, 11) = \frac{83}{176}$.
- 3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer by Co-author Erik Metz is a muffin savant!

Have **General Theorems** from which **upper bounds** follow. Have **General Procedures** from which **lower bounds** follow.

$$f(3,5) \ge ?$$

Clearly $f(3,5) \ge \frac{1}{5}$. Can we get $f(3,5) > \frac{1}{5}$?

$$f(3,5) \ge ?$$

Clearly
$$f(3,5) \ge \frac{1}{5}$$
. Can we get $f(3,5) > \frac{1}{5}$? $f(3,5) \ge \frac{1}{4}$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

$$f(3,5) \ge ?$$

Clearly
$$f(3,5) \ge \frac{1}{5}$$
. Can we get $f(3,5) > \frac{1}{5}$? $f(3,5) \ge \frac{1}{4}$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

Can we do better?

$$f(3,5) \ge ?$$

Clearly
$$f(3,5) \ge \frac{1}{5}$$
. Can we get $f(3,5) > \frac{1}{5}$? $f(3,5) \ge \frac{1}{4}$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

Can we do better?

NO

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $\left(\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\right)$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

$$f(3,5)\geq \tfrac{1}{4}$$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

$$f(3,5)\geq \tfrac{1}{4}$$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$
- f(3,5) proc is f(5,3) proc but swap Divide/Give and mult by 3/5.

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

$$f(3,5)\geq \tfrac{1}{4}$$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$
- f(3,5) proc is f(5,3) proc but swap Divide/Give and mult by 3/5. **Theorem:** $f(m,s) = \frac{m}{c} f(s,m)$.

Floor-Ceiling Thm (FC Thm) Generalizes $f(5,3) \leq \frac{5}{12}$

$$f(m,s) \leq FC(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets
$$\geq \left\lceil \frac{2m}{s} \right\rceil$$
 pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

Someone gets
$$\leq \lfloor \frac{2m}{s} \rfloor$$
 pieces. \exists piece $\geq \frac{m}{s} \frac{1}{\lfloor 2m/s \rfloor} = \frac{m}{s \lfloor 2m/s \rfloor}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s|2m/s|}$.

THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

$$f(1,3)=\tfrac{1}{3}$$

$$f(3k,3) = 1.$$

$$f(3k+1,3) = \frac{3k-1}{6k}, \ k \ge 1.$$

$$f(3k+2,3) = \frac{3k+2}{6k+6}.$$

Note: A Mod 3 Pattern.

Theorem: For all $m \ge 3$, f(m,3) = FC(m,3).

FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

$$f(4k, 4) = 1$$
 (easy)

$$f(1,4) = \frac{1}{4} \text{ (easy)}$$

$$f(4k+1,4) = \frac{4k-1}{8k}, \ k \ge 1.$$

$$f(4k+2,4) = \frac{1}{2}.$$

$$f(4k+3,4) = \frac{4k+1}{8k+4}.$$

Note: A Mod 4 Pattern.

Theorem: For all $m \ge 4$, f(m, 4) = FC(m, 4).

FC-Conjecture: For all m, s with $m \ge s$, f(m, s) = FC(m, s).

FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For
$$k \ge 1$$
, $f(5k, 5) = 1$.

For
$$k = 1$$
 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. $f(11, 5)$?

For
$$k \ge 2$$
, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7, 5) = FC(7, 5) = \frac{1}{3}$

For
$$k \ge 1$$
, $f(5k + 3, 5) = \frac{5k+3}{10k+10}$

For
$$k \ge 1$$
, $f(5k+4,5) = \frac{5k+1}{10k+5}$

Note: A Mod 5 Pattern.

Theorem: For all $m \ge 5$ except m=11, f(m,5) = FC(m,5).

What About FIVE students, ELEVEN muffins?

- 1. We have a procedure which shows $f(11,5) \ge \frac{13}{30}$.
- 2. $f(11,5) \le \max\{\frac{1}{3}, \min\{\frac{11}{5\lceil 22/5\rceil}, 1 \frac{11}{5\lceil 22/5\rceil}\}\} = \frac{11}{25}$.

So

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25}$$
 Diff= 0.006666...

If $f(5,11) < \frac{11}{25}$ then FC-conjecture is false!

What About FIVE students, ELEVEN muffins?

- 1. We have a procedure which shows $f(11,5) \ge \frac{13}{30}$.
- 2. $f(11,5) \le \max\{\frac{1}{3}, \min\{\frac{11}{5\lceil 22/5\rceil}, 1 \frac{11}{5\lceil 22/5\rceil}\}\} = \frac{11}{25}$.

So

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25}$$
 Diff= 0.006666...

If $f(5,11) < \frac{11}{25}$ then FC-conjecture is false!

WE SHOW:
$$f(11,5) = \frac{13}{30}$$

$$f(11,5) = \frac{13}{30}$$
, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece N. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. $N \leq \frac{1}{3} < \frac{13}{30}$.

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)

$$f(11,5) = \frac{13}{30}$$
, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \le \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

Case 3: Some student gets \leq 3 pieces.

One of the pieces is

$$\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.$$

Look at the muffin it came from to find a piece that is

$$\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.$$

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- \triangleright s_4 is number of students who get 4 pieces
- \triangleright s_5 is number of students who get 5 pieces

$$4s_4 + 5s_5 = 22$$

 $s_4 + s_5 = 5$

 $s_4 = 3$: There are 3 students who have 4 shares.

 $s_5 = 2$: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a **4-share**. We call a share that goes to a person who gets 5 shares a **5-share**.

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

Case 4.1: is $\leq \frac{1}{2}$. Then there is a piece

$$\geq \frac{(11/5)-(1/2)}{3} = \frac{17}{30}.$$

The other piece from the muffin is

$$\leq 1 - \frac{17}{30} = \frac{13}{30}$$
 Great to see $\frac{13}{30}$.

Case 4.2: All 4-shares are $> \frac{1}{2}$. So there are $4s_4 = 12$ 4-shares. There are ≥ 12 pieces $> \frac{1}{2}$. Can't occur.

Essence of the Interval Method

- 1. Every muffin cut into two pieces.
- 2. Find L such that some students get either L or L+1 pieces.
- 3. Find how many students get L(L+1) pieces.
- 4. Find intervals that these pieces must be in.
- 5. Find how many pieces are in an interval
- Get a contradiction out of this.

Note: Can turn Interval Theorem into a function *INT* such that $f(m,s) \leq INT(m,s)$.

FC CONJECTURE STILL SORT OF TRUE

FC Conj: For all $m \ge s$, f(m, s) = FC(m, s). FALSE

Theorem: For fixed s, for $m \ge \frac{s^3 + 2s^2 + s}{2}$ f(m, s) = FC(m, s).

Statistics: For $3 \le s \le 50$, $s + 1 \le m \le 59$:

f(m,s) = FC(m,s) in 683 cases f(m,s) = INT(m,s) in 194 cases

Still 108 cases left. Need new technique!

The Buddy-Match Method! (BM)

Can FC and INT do everything?

They are very good when $\frac{2m}{s} > 3$ but NOT so good otherwise. We do a concrete example of **The Buddy-Match Method**

$$f(43,39) \le \frac{53}{156}$$

(We have matching lower bound also)

Definition: Assume we have a protocol where all students get 2 or 3 shares. If x is a 2-share then the other share that student has is the shares **match**. Note that $M(x) = \frac{m}{s} - x$.

Warning: We will apply M to intervals. These intervals have to have only 2-shares in them! But they will!

$$f(43,39) \le \frac{53}{156}$$

Theorem $f(43,39) \le \frac{53}{156}$ (\ge also known). Assume there is an (43,39)-procedure with smallest piece $> \frac{53}{156}$. Can assume all muffins cut in 2 pieces, all students get > 2 shares.

Case 1: A student gets ≥ 4 shares. Some share $\leq \frac{43}{39 \times 4} < \frac{53}{156}$.

Case 2: A student gets ≤ 1 shares. Can't occur.

Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The total number of shares is 86.

How Many Students get Two Shares? Three Shares?

Let s_2 (s_3) be the number of 2-students (3-students).

$$2s_2 + 3s_3 = 86$$

 $s_2 + s_3 = 39$ Get $s_2 = 31$ and $s_3 = 8$

Case 3.1, 3.2, 3.3, 3.4:

(
$$\exists$$
) 3-share $\geq \frac{66}{156}$. Rm. Now 2-shares $\geq \frac{43}{39} - \frac{66}{156} = \frac{53}{78}$.

So some share $\leq \frac{53}{156}$.

By similar reasoning (Case 3.2, 3.3, 3.4) we have:

The Buddy-Match Method

More Buddy-Match Method

$$|(\frac{85}{156},\frac{87}{156})|=14.$$
 Buddy-Match yields $|(\frac{53}{156},\frac{55}{156})|=14$

$$|[\frac{66}{156},\frac{69}{156}]|=0.$$
 Buddy-Match yields $|[\frac{55}{156},\frac{58}{156}]|=0.$

The following picture captures what we know so far about 3-shares.

Big Shares and Small Shares

- ► Shares in $(\frac{53}{156}, \frac{55}{156})$ are *small shares*;
- ▶ Shares in $(\frac{58}{156}, \frac{66}{156})$ are *large shares*;

Notation d_i is numb of students who have i small shares (3 - i) large shares).

$$d_0=0$$
 since $3 imes rac{58}{156}=rac{174}{156}>rac{172}{156}=rac{43}{39}.$

$$d_3 = 0$$
 since $3 \times \frac{55}{156} = \frac{165}{156} < \frac{172}{156} = \frac{43}{39}$.

SO there are NO d_0 -students or d_3 -students.

d_1 and d_2 Students Cause a Gap!

 d_1 : If a d_1 -student has a large shares $\geq \frac{61}{156}$ then he will have

$$>$$
 $\frac{53}{156} + \frac{58}{156} + \frac{61}{156} = \frac{172}{156} = \frac{43}{39}.$

Upshot: Large shares of d_1 -student are in $(\frac{58}{156}, \frac{61}{156})$.

 d_2 : If a d_2 -student has a large shares $\leq \frac{62}{156}$ then he will have

$$<\frac{55}{156}+\frac{55}{156}+\frac{62}{156}=\frac{172}{156}=\frac{43}{39}.$$

Upshot: Large shares of a d_2 -student are in $(\frac{62}{156}, \frac{66}{156})$.

Upshot Upshot: There are NO shares in $\left[\frac{61}{156}, \frac{62}{156}\right]$

Even More Buddy Match

The following picture captures what we know so far about 3-shares.

Use Buddy-Match to show that $|(\frac{61}{156}, \frac{62}{156})| = |(\frac{62}{156}, \frac{63}{156})|$. So:

$$x + y = 10.$$

Use Buddy-Match to show that $|(\frac{58}{156}, \frac{61}{156})| = |(\frac{63}{156}, \frac{66}{156})|$ so they are are both 5.

Equations

Only the d_2 -students use $(\frac{63}{156}, \frac{66}{156})$. Every d_2 student uses one share from that interval:

$$d_2 = 5$$
.

Each d_i student uses i shares from $(\frac{53}{156}, \frac{55}{156})$:

$$1 \times d_1 + 2 \times d_2 = 14$$
: So $d_1 = 4$

There are 8 3-students:

$$d_1 + d_2 = 8$$
: So $5 + 4 = 8$.CONTRADICTION!

The Essence of The Buddy-Match Method

- 1. Works when $\left\lceil \frac{2m}{s} \right\rceil = 3$: Just 2-shares and 3-shares.
- 2. 2m pieces, s_2 students get 2 shares, s_3 students get 3 shares.
- 3. Find a GAP
- 4. Using BM Sequence on 3-shares-interval find intervals that cover almost the entire interval. Missing an interval (a, b).
- 5. Use BM on (a, b) to get info on an initial interval of 3-shares.
- 6. Use BM on GAP to get GAPs within the 3-shares.
- 7. Set up linear equations relating intervals and types of students.
- 8. Show that system has no solution in **N**.

Note: Can turn BM technique into a function BM(m, s) such that $f(m, s) \leq BM(m, s)$.

Statistics

For
$$3 \le s \le 50$$
, $s + 1 \le m \le 59$:

$$f(m,s) = FC(m,s)$$
 in 683 cases $f(m,s) = INT(m,s)$ in 193 cases $f(m,s) = BM(m,s)$ in 85 cases. $f(m,s) = ERIK(m,s)$ in 5 cases.

f(m, s) is OPEN in 18 cases.

 \sim 98% of the cases solved!

A Guess that Works. But Why?

1) We suspected there was a constant X such that:

$$(\forall k \geq 1) \bigg[f(21k+11,21k+4) \leq \frac{7k+X}{21k+4} \bigg]$$

- 2) We knew that $f(11,4) = \frac{9}{20}$ so we conjectured $X = \frac{9}{5}$.
- 3) We prove the result with $X = \frac{9}{5}$ and $k \ge 1$ using BM. We prove matching lower bound for several k.
- 4) But the proof for f(11,4) (k=0) cannot use BM and is totally unrelated to the proof for $k \ge 1$. Note: This technique always worked!

Another Guess that Works But we Don't Know Why

Want to know f(41, 19). Can't use BM. 41 - 19 = 22. So try to prove, diff d is always Mod 3d pattern. Need X:

$$(\forall k \geq 1) \bigg[f(66k + 41, 66k + 19) \leq \frac{22k + X}{66k + 19} \bigg]$$

Find X using BM and linear algebra (have program for that). Get conj: $f(41,19) = \frac{X}{10}$.

Note: This seems to always work but have not been able to use to get new results yet.

Open Problems: $1 \le s \le 40$, $s + 1 \le 59$

М	S	LB	UB	Method for UB
41	19	980/2280	983/2280	ERIK
41	23	195/483	196/4839	FC
54	25	215/500	216/500/	FC
59	26	134/312	135/312	FC
47	29	140/348	141/348	FC
49	30	340/840	343/840	FC
52	31	152/372	153/372	INT
55	31	75/186	76/186	FC
59	33	159/396	160/396	FC
55	34	164/408	165/408	FC
57	35	56/140	57/140	FC
47	36	74/216	75/216	FC
48	37	512/1480	515/1480	BM

Open Problems: $41 \le s \le 50$, $s + 1 \le 59$

М	S	LB	UB	Method for UB
55	42	86/252	87/252	FC
53	43	183/516	184/516	INT
55	43	90/258	91/258	INT
56	43	59/172	60/172	FC
59	45	92/270	93/270	FC

Programs

We have a program that on input (m, s):

- 1. We we used FC, INT, BM to get upper bounds.
- 2. BM method is a theorem generator.
- 3. Use linear algebra to try to find a lower bound (a procedure).

Results

- 1. FC, INT, and BM upper bounds on f(m, s)
- 2. For fixed s, for $m \ge \sim s^3$, f(m, s) = FC(m, s).
- 3. For all $m \ge s$ $f(m, s) \ge \frac{1}{3}$.
- 4. For $1 \le s \le 7$ have proven formulas for f(m, s). Mod s pattern
- 5. For s = 8, ..., 100 conjectures for f(m, s). f(m, s) seems to be a mod s pattern.
- 6. For $1 \le d \le 7$ have proven formulas for f(s+d,s). Mod 3d pattern.
- 7. For all d conjecture that our Theorem Generator gives f(s+d,s).
- 8. Conjecture that for all a, d there exists X such that

$$(\forall k \ge 0) \left[f(3dk + a + d, 3dk + a) \le \frac{dk + X}{3dk + a} \right]$$

Open Problems-Complexity

Consider:

Given m, s in binary, compute f(m, s).

- 1. Is the problem in P? We keep on finding techniques that we think cover all cases (so it would be in P) but then finding a case not covered.
- 2. Is it in NP? The procedure might be very large compared to the input.
- 3. Is it NP-complete or NP-hard?
- 4. The problem IS in FPT: $(\forall m \geq s^3)[f(m,s) = FC(m,s)]$.

Conjectures That are Surely True

- 1. f(m, s) has mod s pattern with a few exceptions (known for large m).
- 2. f(s+d,s) has mod 3d pattern with no exceptions.
- 3. f(m, s) only depends on m/s.
- 4. If $f(m,s) = \frac{a}{b}$ then s divides b.

Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

- ▶ 4 High School students (Guang, Naveen, Naveen, Sunny)
- ▶ 3 college student (Erik, Jacob, Daniel)
- ▶ 1 professor (John D)

that the most important field of Mathematics is Muffinry.