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Abstract

Let n ∈ N and let MN(n) = {ay : y 6= n}. It is easy to show that
any DFA for MN(n) requires n+ 2 states. What about an NFA? It is
a folklore theorem that there is an NFA for MN(n) with O(

√
n) states.

We consider a generalization of this problem. Let A be a set and
let MN(A) = {ay : y /∈ A}. (MN stands for Missing Number.) We
show that for many finite sets A the NFA for MN(A) is much smaller
than the DFA for MN(A). In the process we get more refined bounds
on the size of an NFA for MN(n).

1 Introduction

Consider the language

MN(n) = {ay : y 6= n}.

(MN stands for Missing Number.)
It is easy to show that (1) there is a DFA for MN(n) with n + 2 state,

and (2) any DFA for MN(n) has at least n+ 2 states. What about an NFA
for MN(n)? What about other cofinite unary sets?
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Def 1.1 If A ⊆ N then

MN(A) = {ay : y /∈ A}.

We will only use this definition when A is finite.

Def 1.2 If L is any language then a small NFA for L is an NFA of size �
the number of states for an optimal DFA for L.

In Section 3 we show (1) An NFA for MN(1000) of size 59, (2) An NFA for
MN(999, 1000, 1001, 1002, 1003) of size 316 (and one of size 190, and finally
one of size 99). The proofs contains many of the ideas for later results. In
Section 4 and 5 we give small NFA’s for partial sets. That means that there
will be many strings that we do not care if the NFA accepts them or not. In
Section 6, 7, and 6.2 we use the results of Sections 4 and 5 to show there are
small NFA’s for many sets of the form MN(A). In Section 8 we show that
any NFA for MN(n, . . . , n+k−1) requires max{k,

√
n)} states. In Section 9

we discuss open problems and present some empirical results.
We will often want to ignore polylog terms, so we use the following nota-

tion.

Notation 1.3 If f and g are functions then f(n) = Õ(g(n)) means that
there exists i such that f(n) = O(g(n) logi(n)).

2 The LOOP(c, d, e) NFA

We will need a certain NFA in all of our constructions:

Def 2.1 Let c, d, e ∈ N such that 1 ≤ c ≤ d− 1. We describe LOOP(c, d, e)
for when e < d and consider the e ≥ d case later.

1. states 0, 1, . . . , d− 1 with 0 as the start state and e as the only accept
state,

2. for all 0 ≤ i ≤ d− 1 with i 6= c, δ(i, a) = i+ 1 (mod d),

3. δ(c−1, a) = {0, c} (so the NFA is a cycle with a chord that is a shortcut
back to the start state).
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Note that to get to the accept state, we need to go through several (possibly
0) cycles, each of length c or d, and then e more steps, so LOOP(c, d, e)
accepts

L = {ay : (∃C,D ∈ N)[y = cC + dD + e]}

and has d states.
If e > d then the NFA will have a string of states of length e from the

start state to the only accept state. That accept state will then have the
d-loop and the c-shortcut. This NFA recognizes L and has d+ e states.

Lemma 2.2 Let c, d, e be such that c < d are relatively prime. There exists
an NFA M such that:

1. M accepts all elements of {ay : y ≥ cd− c− d+ e+ 1}.

2. M rejects acd−c−d+e.

3. M rejects strings of the form acd−Cc−Dd+e where C,D ≥ 1.

4. We have no comment on any other strings.

5. If e < d then M has d states.

6. If e ≥ d then M has d+ e states.

Proof: Let M = LOOP(c, d, e).
The following is well known. See Alfonsin [1], page 31, for several proofs

and references.

1. All natural numbers ≥ cd− c− d+ 1 are in {xc+ yd : x, y ∈ N}.

2. cd− c− d /∈ {xc+ yd : x, y ∈ N}.

Hence for all c, d relatively prime and e ∈ N:

1. All natural numbers ≥ cd− c−d+ e+ 1 are in {xc+ yd+ e : x, y ∈ N}.
Hence M = LOOP(c, d, e) accepts all elements of {ay : y ≥ c+d+e+1}.

2. cd − c − d + e /∈ {xc + yd + e : x, y ∈ N}. Hence M = LOOP(c, d, e)
rejects acd−c−d+e.

3



Assume, by way of contradiction, that M accepts some string of the form
acd−Cc−Dd+e where C,D ≥ 1. Then

cd− cC −Dd+ e ∈ {xc+ yd+ e : x, y ∈ N}.

so

cd− cC −Dd+ e = xc+ yd+ e

Add c(C − 1) + d(D − 1) to both sides to get

cd− c− d+ e = (x+ C − 1)c+ (y +D − 1)d+ e.

Since C,D ≥ 1, x + C − 1, y + D − 1 ≥ 0. Therefore cd − c − d + e ∈
{xc+ yd+ e : x,∈ N} which is false.

3 Examples of Small NFAs for MN(A)

3.1 A Small NFA for MN(1000)

Theorem 3.1 There exists an NFA for MN(1000) with 59 States.

Proof: Let M ′ be the NFA from Lemma 2.2 with c = 32, d = 33, and
d = 9. By that lemma (1) M accepts all elements in {ay : y ≥ 32× 33− 33−
32 + 9 + 1 = 1001}, (2) M rejects a1000, and (3) M has 33 states.

Note that M rejects some ay with y ≤ 999 that we want to accept.
For q ∈ {4, 5, 7, 9} create a DFA Mq that accepts {ay : y 6≡ 1000

(mod q)}. Note that Mq has q states.
Our final NFA M has a start state and ε transitions to M ′, M4, M5, M7,

M9. The number of states is 1 + 33 + 4 + 5 + 7 + 9 = 59.
Let ay be a string rejected by M . By the nature of M ′, y ≤ 999. By the

definition of M4, M5, M7, M9 we have

y ≡ 1000 (mod 4)
y ≡ 1000 (mod 5)
y ≡ 1000 (mod 7)
y ≡ 1000 (mod 9)

Since 4, 5, 7, 9 are relatively prime and 4 × 5 × 7 × 9 = 1260 > 1000,
y = 1000.
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Therefore M accepts MN(1000).

3.2 A Small NFA for MN(999, 1000, 1001, 1002, 1003)

Theorem 3.2

1. There exists an NFA for MN(999, 1000, 1001, 1002, 1003) with 316 states.

2. There exists an NFA for MN(999, 1000, 1001, 1002, 1003) with 190 states.

3. There exists an NFA for MN(999, 1000, 1001, 1002, 1003) with 99 states.

Proof:
All three proofs begin the same way.
Let M be the NFA from Lemma 2.2 with c = 34, d = 35 e = 18. By that

lemma (1) M accepts all elements in {ay : y ≥ 35× 34− 35− 34 + 18 + 1 =
1139}, (2) M rejects a1138, and (3) M has 35 states. One can also show that
M rejects {a999, a1000, a1001, a1002, a1003}.

Note that M ′ rejects some ay with y ≤ 1138 that we want to accept. We
show three ways to deal with this.

1) Let Q = {2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 49}. Note that

∏
q∈Q

q = 2, 129, 751, 844, 690, 470 > 1, 916, 984, 564, 383, 744 = (1139)5

and ∑
q∈Q

q = 280.

For each q ∈ Q create a DFA Mq that accepts

{ay : y 6≡ 999, 1000, 1001, 1002, 1003 (mod q)}.

Note that Mq has q states.
Our final NFA M has a start state and ε transitions to M ′ and to all Mq.

Hence the number of states in M is 1 + 35 + 280 = 316.
Let ay be a string rejected by M . By the nature of M ′, y ≤ 1138. By the

definition of Mq we have the following.
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(For reasons of space we abbreviate (mod p) by (p).)

y ≡ 999(2) or y ≡ 1000(2) or y ≡ 1001(2) or y ≡ 1002(2) or y ≡ 1003(2)
y ≡ 999(3) or y ≡ 1000(3) or y ≡ 1001(3) or y ≡ 1002(3) or y ≡ 1003(3)
y ≡ 999(5) or y ≡ 1000(5) or y ≡ 1001(5) or y ≡ 1002(5) or y ≡ 1003(5)
y ≡ 999(11) or y ≡ 1000(11) or y ≡ 1001(11) or y ≡ 1002(11) or y ≡ 1003(11)
y ≡ 999(13) or y ≡ 1000(13) or y ≡ 1001(13) or y ≡ 1002(13) or y ≡ 1003(13)
y ≡ 999(17) or y ≡ 1000(17) or y ≡ 1001(17) or y ≡ 1002(17) or y ≡ 1003(17)
y ≡ 999(19) or y ≡ 1000(19) or y ≡ 1001(19) or y ≡ 1002(19) or y ≡ 1003(19)
y ≡ 999(23) or y ≡ 1000(23) or y ≡ 1001(23) or y ≡ 1002(23) or y ≡ 1003(23)
y ≡ 999(29) or y ≡ 1000(29) or y ≡ 1001(29) or y ≡ 1002(29) or y ≡ 1003(29)
y ≡ 999(31) or y ≡ 1000(31) or y ≡ 1001(31) or y ≡ 1002(31) or y ≡ 1003(31)
y ≡ 999(37) or y ≡ 1000(37) or y ≡ 1001(37) or y ≡ 1002(37) or y ≡ 1003(37)
y ≡ 999(41) or y ≡ 1000(41) or y ≡ 1001(41) or y ≡ 1002(41) or y ≡ 1003(41)
y ≡ 999(49) or y ≡ 1000(49) or y ≡ 1001(49) or y ≡ 1002(49) or y ≡ 1003(49)

Let

Q999 = {q ∈ Q : y ≡ 999 (mod q)}

Q1000 = {q ∈ Q : y ≡ 1000 (mod q)}

Q1001 = {q ∈ Q : y ≡ 1001 (mod q)}

Q1002 = {q ∈ Q : y ≡ 1002 (mod q)}

Q1003 = {q ∈ Q : y ≡ 1003 (mod q)}
Every q ∈ Q is in at least one of Q999, Q1000, Q1001, Q1002, Q1003. Let

R999 =
∏

q∈Q999

q

R1000 =
∏

q∈Q1000

q

R1001 =
∏

q∈Q1001

q
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R1002 =
∏

q∈Q1002

q

R1003 =
∏

q∈Q1003

q

Since every q ∈ Q is in some R we have

R999R1000R1001R1002R1003 ≥
∏
q∈Q

q > (1139)5

Hence there is an x ∈ {999, 1000, 1001, 1002, 1003} such that Rx ≥ 1139.
Since y ≤ 1138, y ≡ x mod each of the primes in Qx, and Rx ≥ 1139, y = x.
Hence y ∈ {999, 1000, 1001, 1002, 1003}.

2) Let Q = {1 × 7, 2 × 7, 3 × 7, 5 × 7, 11 × 7}. Note that the lcm of Q is
7× 2× 3× 5× 11 = 2310 > 1139 and

∑
q∈Q q = 154.

For each q ∈ Q create a DFA Mq that accepts

{ay : y 6≡ 999, 1000, 1001, 1002, 1003 (mod q)}.

Note that Mq has q states.
Our final NFA M has a start state and ε transitions to M ′ and to all Mq.

Hence the number of states in M is 1 + 35 + 154 = 190.
Let ay be a string rejected by M . By the nature of M ′, y ≤ 1138. By the

definition of Mq we have

y ≡ 999(7) or y ≡ 1000(7) or y ≡ 1001(7) or y ≡ 1002(7) or y ≡ 1003(7)
y ≡ 999(14) or y ≡ 1000(14) or y ≡ 1001(14) or y ≡ 1002(14) or y ≡ 1003(14)
y ≡ 999(21) or y ≡ 1000(21) or y ≡ 1001(21) or y ≡ 1002(21) or y ≡ 1003(21)
y ≡ 999(35) or y ≡ 1000(35) or y ≡ 1001(35) or y ≡ 1002(35) or y ≡ 1003(35)

Let x1 ∈ {999, 1000, 1001, 1002, 1003} be such that y ≡ x (mod 7). We
claim that y ≡ x (mod 14) (and mod 21 and mod 35). Since y ≡ x1 (mod 7),
there exists m1 such that

y = x1 + 7m1

Let x2 be such that y ≡ x2 (mod 14). Then there exists m2 such that
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y = x2 + 14m2

Subtract these two equations to obtain

0 = (x1 − x2) + 7m1 − 14m2

x1 ≡ x2 (mod 7).

Since no two elements of {999, 1000, 1001, 1002, 1003} are equivalent mod
7 (which is why we picked 7) we have x1 = x2.
Similarly y ≡ x mod 21 and 35.
Since y ≡ x (mod 7), y ≡ x (mod 14), y ≡ x (mod 21) and y ≡ x (mod 35),
we have y ≡ x (mod lcm(7, 14, 21, 35)). Since the lcm is ≥ 1139 we have
y = x.

3) Use M and also Mq where q ∈ {9, 13, 19, 23}. We omit the proof that
this works. The number of states is 1 + 35 + 9 + 13 + 19 + 23 = 99. We found
this NFA by a computer search, so there is no general theorem based on it.

Several of the methods in the above constructions can be generalized.
We call the technique used in the proof of Theorem 3.2.1 (Theorem 3.2.2,
Theorem 3.2.3) by the name “T1” (T2, T3).

1. T1 is generalized in Lemma 4.1. T2 is generalized in Lemma 5.7. T3
was found by brute force and hence cannot be generalized.

2. Let A be a finite set. If we want to get a small NFA for MN(A) should
we use T1 or T2?

• If A does not have that many elements in it then use T1. In
particular if there are ` elements then you will need a set of primes
whose product is ≥ N ` for some N . If ` is small this set of primes
will have a small sum.

• If there is small prime p such that no two elements of A are con-
gruent mod p then use T2. You will need a set of primes such that
the product of p with those primes is ≥ N ; however, the part of
the NFA will have uses this will have size p times the sum of the
primes.
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• Exercise: Work out the small NFA’s for {999, 1003} using both
T1 and T2. T1 will do better than T2 here.

3. For large n the number of states in the LOOP part will dominate the
number of states in the primes-part.

4 A Small NFA for a Particular Partial Cofi-

nite Set

We use the following is the d = c+ 1 case of Lemma 2.2:

Lemma 4.1 Let c, e ∈ N. There exists an NFA M such that the following
all hold:

1. M accepts all elements of {ay : y ≥ c2 − c+ e}.

2. M rejects ac
2−c+e−1.

3. M rejects strings of the form ac(c+1)−Cc−D(c+1)+e where C,D ≥ 1.

4. M may or may not accept any other string.

5. If e < c+ 1 then M has c+ 1 states.

6. If e ≥ c+ 1 then M has c+ e+ 1 states.

Lemma 4.2 Let k, n ∈ N.

(k + 1) +
√

4n+ (k + 1)2 + 4k + 4

2
≤
√
n+ k + 2

Proof:

(k + 1) +
√

4n+ (k + 1)2 + 4k + 4

2
≤

(k + 1) +
√

4n+
√

(k + 3)2

2

≤ 2
√
n+ 2k + 4

2
≤
√
n+ k + 2
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Lemma 4.3 Let k, n ∈ N. There exists c, e such that the following hold:

1. n = c2 − kc− k + e OR n = c2 − (k + 1)c− (k + 1) + e.

2. c ≤
√
n+ k + 2.

3. 0 ≤ e ≤ k + c.

Proof:
Consider the two sets of intervals (of naturals) indexed by c.

I1
c = [c2−(k+1)c−(k+1)+0, c2−(k+1)c+(c−1)] = [c2−(k+1)c−(k+1), c2−kc−1]

I2
c = [c2−kc−k+ 0, c2−kc−k+ (c−1)] = [c2−kc−k, c2− (k−1)c−k−1]

Since the left end point of I2
c is ≤ the right endpoint of I1

c , the union of
all of these intervals is

∞⋃
c=1

[c2 − (k + 1)c− (k + 1), c2 − (k − 1)c− k − 1]

This covers all of N since

(c+ 1)2 − (k + 1)(c+ 1)− (k + 1) = c2 + 2c+ 1− (k + 1)(c+ 1)− (k + 1) =

c2 − (k − 1)c− k

and the prior interval ended at c2 − (k − 1)c− k − 1.
So, given n one of the following holds:

Case 1: There is a c such that n ∈ [c2 − (k + 1)c − (k + 1), c2 − kc − 1].
Clearly n is of the form n = c2− (k+ 1)c− (k+ 1) + e with e ≤ c+ k. Hence

c2 − (k + 1)c+ (e− k − n− 1) = 0

We use the quadratic formula. We ignore the case of −
√
b2 − 4ac since

the upper bound in that case is better than the one we get in the +
√
b2 − 4ac

case.
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c =
(k + 1) +

√
(k + 1)2 + 4(n− e+ k + 1)

2

By Lemma 4.2 c ≤
√
n+ k + 2.

Case 2: There is a c such that n ∈ [c2 − kc − k, c2 − (k − 1)c − k − 1].
Clearly n is of the form c2 − kc− k + e where e ≤ c− 1.

n = c2 − kc− k + e

c2 − kc+ (e− n− k) = 0

We use the quadratic formula. We ignore the case of −
√
b2 − 4ac since

the upper bound in that case is better than the one we get in the +
√
b2 − 4ac

case.

c =
k +

√
k2 + 4(n+ k − e)

2

By Lemma 4.2 c ≤
√
n+ k + 2.

Lemma 4.4 Let k ≥ 2. For all n there is an NFA M such that

1. M accepts ay for all y ≥ n+ k
√
n+ k2 + 3k.

2. M does not accept an, . . . , an+k−1.

3. We do not care what M does in the cases not specified above.

4. If k = O(1) then M is of size
√
n+O(1).

5. If k = O(nδ) then M is of size ≤ 2nmax{1/2,δ} +O(1).

Proof:
Let c be as in Lemma 4.3. Note that c ≤

√
n + k + 2. We will use

LOOP(c, c+ 1, e) for some e ≤ c+ k. Hence:

• If k = O(1) then k ≤ c and LOOP(c, c+1, e) is of size c+1 ≤
√
n+O(1).
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• If k = O(nδ) then either (1) δ ≤ 1/2 and LOOP(c, c + 1, e) is of size
c+ 1 = n1/2 + nδ ≤ 2n1/2 +O(1) or (2) δ > 1/2 and LOOP(c, c+ 1, e)
is of size ≤ n1/2 + nδ ≤ 2nδ + O(1). Hence the NFA is of size ≤
2nmax{1/2,δ} +O(1).

Case 1: n = c2 − kc− k + e. Let M be the NFA from Lemma 4.1 with c, e.
Then M accepts {ay : y ≥ c2 − c− 1 + e}.
Note that

c2 − c− 1 + e = (c2 − kc− k + e) + kc+ k − c− 1 = n+ kc+ k − c− 1

≤ n+ kc+ k ≤ n+ k(
√
n+ k + 2) + k ≤ n+ k

√
n+ k2 + 3k.

Hence M accepts {ay : y ≥ n+ k
√
n+ k2 + 3k}.

Since, for all C,D ∈ N≥1 M does not accept ac(c+1)−Cc−D(c+1)+e, for 0 ≤
i ≤ k − 1, using C = i + 1 and D = k − i we get that for all 0 ≤ i ≤ k − 1,
M does not accept an+i.
Case 2: n = c2− (k+ 1)c− (k+ 1) + e. Let M be the NFA from Lemma 4.1
with c, e.

Then M accepts {ay : y ≥ c2 − c− 1 + e}.
Note that

c2−c−1+e = (c2−(k+1)c−(k+1)+e)+(k+1)c+(k+1)−c−1 = n+kc+k

As in Case 1 this is ≤ n+ k
√
n+ k2 + 3k.

Hence M accepts {ay : y ≥ n+ k
√
n+ k2 + 3k}.

Since for all C,D ∈ N≥1 M does not accept ac(c+1)−Cc−D(c+1)+e, for 0 ≤
i ≤ k − 1, let C = i+ 1 and D = k + 1− i we get that for all 0 ≤ i ≤ k − 1,
M does not accept an+i.

5 Small NFAs for Partial Finite Sets

5.1 A Small NFA for a Large Partial Finite Set

Def 5.1 Let N ∈ N. A set Q of naturals is N-cool if
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1. Q is a set of relatively prime numbers.

2.
∏

q∈Q q ≥ N .

Let f(N) be the min sum over all N -cool sets Q.

Lemma 5.2 f(N) ≤ ln2N .

Proof:
A function related to f has been well studied:

Def 5.3 Let S ∈ N. L(S) is the maximum least common multiple of a
partition of S. L is known as Landau’s function.

Massias et al. [4] shows that, for S ≥ 2, L(S) ≥ e
√
S lnS. So, if e

√
S lnS ≥

N , we can find a set Q of relatively prime numbers such that the product
over Q is at least N and the sum over Q is at most S. Hence, for N ≥ 2,
f(N) ≤ ln2N (better bounds are possible but will not help us).

Lemma 5.4 Let ` < N . Let A ⊆ {1, . . . , N} of size `. There is an NFA M
such that

1. If M rejects ay then either y ∈ A or y ≥ N .

2. We do not care what M does in the cases not specified above.

3. M is of size O(`2 log2N).

4. If N = n∆ and ∆ = O(1) then M is of size Õ(`2). (This follows from
the previous part.)

Proof:
By Lemma 5.2 there exists an N `-cool set Q such that

∑
q∈Q q ≤ ln2N ` =

`2 ln2N .
For each q ∈ Q let Mq be the DFA that accepts the following set:

{ay : (∀x ∈ A)[y 6≡ x (mod q)]}.

(It is possible for some of the DFA’s to not accept any strings. We discuss
this point after the proof.)
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Let M be the NFA that has an ε transition to each Mq.
Let y be such that ay is rejected by M and y ≤ N . Then

(∀q ∈ Q)(∃x ∈ A)[y ≡ x (mod q)].

We call this The condition.
For every x ∈ A let

Qx = {q ∈ Q : y ≡ x (mod q)}

Rx =
∏
q∈Qx

q

By condition 2 every q ∈ Q is a factor of at least one Rx. Hence∏
x∈Q

Rx ≥
∏
q∈Q

q ≥ N `

Since the left hand side is the product of ` numbers one of them is ≥ N .
Therefore there exists x such that Rx ≥ N . Hence there exists a set Qx such
that

1. (∀q ∈ Qx)[y ≡ x (mod p)]

2.
∏

q∈Qx
q ≥ N .

Hence y = x. Therefore the only strings rejected are in {ay : y ∈ A}.
The size of the DFA is clearly

1 +
∑
q∈Q

q ≤ `2 log2N +O(1) = O(`2 log2N).

Note 5.5 In the proof of Lemma 5.4, for every q ∈ Q, we have a DFA that
accepts ay iff

(∃x ∈ A)[y 6≡ x (mod q)].

If x, x + 1 ∈ A and q = 2 then this DFA will reject every string. There
are many similar scenarios where the DFA rejects every string. We could
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leave out all such DFA’s associated to q < k; however, we have not been able
to use this to obtain a smaller DFA. In the current proof having all of the
DFA’s makes the analysis easier, though if we removed the ones that reject
everything we could still make essentially the same proof work.

5.2 A Small NFA for a Small Partial Finite Set

Lemma 5.4 is not useful when ` ≥
√
n. We will prove a lemma that will be

helpful when A is a large contiguous set. We first need some known facts
from number theory:

Lemma 5.6 Let m ∈ N. Let q1, . . . , qm be the first m primes.

1.
∏m

i=1 qi = e(1+o(1))m logm.

2.
∑m

i=1 qi ∼
m2

2
logm.

Proof:
1) From Rosser and Shoenfeld [5], equations 3.12 through 3.15, one can easily
derive the result.
2) This result is well known. Axler [2] has references and better bounds.

Lemma 5.7 Let A ⊆ {1, . . . , N}. Let p be such that for all x1, x2 ∈ A,
x1 6≡ x2 (mod p). Let m ≥ 2. There is an NFA M such that

1. If M rejects ay then either y ∈ A or y ≥ N .

2. We do not care what M does in the cases not specified above.

3. M is of size O(p log3(N)).

Proof:
Let qi be the ith prime. Let m be the least number such that q1 · · · qm ≥

N (we only need ≥ N
p

). Since Πm
i=1qi ≥ mm we have m ≤ logN . Since∑m

i=1 qi ≤ m2 logm we have
∑m

i=1 qi ≤ log3N .
For i = 0 to m let Mpqi be the DFA that accepts the following set:

{ay : (∀x ∈ A)[y 6≡ x (mod pqi)]}.
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Let M be the NFA that has ε transitions to each Mpqi . Note that the
number of states in M is

p+
m∑
i=1

pqi = O(p(log(N/p))3).

Let y be such that ay is rejected by M . Since ay is rejected by Mp there
is an x ∈ A such that y ≡ x (mod p).
Claim: For all 1 ≤ i ≤ m, y ≡ x (mod pqi).
Proof of Claim: Let 1 ≤ i ≤ m. Since M rejected ay there is an x′ ∈ A
such that y ≡ x′ (mod pqi). Hence y ≡ x′ (mod p). Since y ≡ x (mod p)
we have x ≡ x′ (mod p). Since no two elements of A are congruent mod p,
x = x′.
End of Proof of Claim

We now have that, for all i = 1 to m, y ≡ x (mod pqi). Hence y ≡ x
(mod pq1q2 · · · qm). Therefore either y = x or y ≥ pq1 · · · qm = N .

We now combine Lemmas 5.4 and 5.7.

Lemma 5.8 Let 0 < ε ≤ δ < 1 and ∆ = O(1). (We assume that nε, nδ, n∆

are integers. Modifications for when it is not are left to the reader.) Let
δ′ > δ (we think of δ′− δ as being very small). Let A ⊆ {n, n+ 1, . . . , n+nδ}
of size nε. There is an NFA M such that

1. If M rejects ay then either y ∈ A or y ≥ n∆.

2. We do not care what M does in the cases not specified above.

3. M is of size Õ(nmin{2ε,δ′}).

Proof: By Lemma 5.4 there is an NFA satisfying (1) and (2) withO(n2ε log2 n∆) =
O(∆n2ε log2 n) = Õ(n2ε) states.

Let p be a prime between nδ and 2nδ. Note that if x1, x2 ∈ A then x1 6≡ x2

(mod p). Let N = n∆. Let A be as above, though view it as a subset of
{1, . . . , n∆}. Apply Lemma 5.7 with p = Θ(nδ) as above, and N = n∆, to
obtain the desired NFA of size

O(p log3N) = Õ(nδ)

Take the smaller of the two NFAs to obtain the result.
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6 Small NFA for MN(A)

6.1 Small NFA for Subsets of {n, . . . , n+ k − 1}
Theorem 6.1 Let n, k, ` ∈ N. Let A ⊆ {n, . . . , n+ k − 1} of size `.

1. If k = O(1) (and hence ` = O(1)) then there is an NFA for MN(A) of
size
√
n+ Õ(1).

2. If k = O(nδ) and ` = O(1) then there is an NFA for MN(A) of size
2nmax{1/2,δ} + Õ(1).

3. If k = O(nδ) and ` = O(nε) then there is an NFA for MN(A) of size
2nmax{1/2,δ} + Õ(nmin{2ε,δ′}) where δ′ is any number that is > δ.

Proof: Let M1 be the NFA from Lemma 4.4 such that

1. M accepts ay for all y ≥ n+ k
√
n+ k2 + 3k.

2. M does not accept an, . . . , an+k−1.

3. We do not care what M does in the cases not specified above.

4. If k = O(1) then M is of size
√
n+O(1)

5. If k = O(nδ) then M is of size ≤ 2nmax{1/2,δ} +O(1).

Let M2 be the NFA from Lemma 5.8, with ∆ such that N = n+ k
√
n+

k2 + 3k ≤ O(n∆). Note that for k � n (which are the only cases below)
∆ ≤ 2 suffices.

1. If M2 rejects ay then either y ∈ A or y ≥ n+ k
√
n+ k2 + 3k.

2. We do not care what M does in the cases not specified above.

3. M2 is of size Õ(nmin{2ε,δ′}) where k = O(nδ), and δ′ > δ. Note that the
following hold:

(a) If ` = O(1) then M2 is of size Õ(1).

(b) If ` = O(nε) then M2 is of size Õ(nmin{2ε,δ′}).

Let M be the NFA that has a start state that has an ε transition into
both M1 and M2. The result follows from the bounds on M1,M2 given above.
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6.2 A Small NFA for MN(n, kn)

If A = {n, 2n} then Theorem 6.1 yields an NFA of size O(n) for MN(A).
This is not a small NFA. Is there a small NFA for MN(A)? Yes:

Theorem 6.2 Let k ∈ Q with 0 < k < 1. Let n be such that kn ∈ N. There
is an NFA for MN(kn, n) with 2

√
n log n+ Õ(1) states.

Proof: We first construct an NFA M with the following three properties:
(1) there exists 1 < α < log kn+O(1) such M accepts {ay | y ≥ αn}, (2) M
does not accept akn, (3) M does not accept an, (4) M has 2

√
n log n+O(1)

states.
Let c, e be such that c(c− 1) < n+ 1 ≤ (c+ 1)c and n = c(c− 1) + e− 1.

Note that c, c+ 1 are ≤
√
n+O(1) and e ≤ 2

√
n+O(1).

By Lemma 2.2 with c, c − 1, e there exists an NFA M such that (1) M
accepts all elements of {ay | y ≥ n+ 1}, and (2) does not accept an. We will
use LOOP(c, c+ 1, e) in the first case directly, in the second case indirectly.

Case 1: LOOP(c, c+ 1, e) does not accept akn. Let M = LOOP(c, c+ 1, e).
M does not accept akn by the premise.
As noted above M does not accept an and it does accept {ay | y ≥ n+1}.

Formally we take α = 2.
M has c+ 1 + e ≤ 3

√
n+O(1) ≤ 2

√
n log n+O(1) states.

Case 2: akn is accepted by LOOP(c, c + 1, e). Then there exists C,D ∈ N
such that

kn = C(c) +D(c+ 1) + e

kn− e = C(c) +D(c+ 1)

Note that a is relatively prime to c+ 1, c(c+ 1) > kn− e, and C,D ≥ 0.
We show that the choice of C and D is unique: If C(c) +D(c+ 1) = C ′(c) +
D′(c+ 1), then (C−C ′)(c) = (D′−D)(c+ 1). Since c and c+ 1 are coprime,
we have z(c + 1) = (C − C ′) and z(c) = (D′ −D) for some integer z. Note
C < c+1 and D < c, so z positive implies C ′ negative, and z negative implies
D′ negative. Hence C,D are unique.

Let p be a small prime that does not divide D or c (one can show that
p = log(Dc) +O(1) ≤ log(kn) +O(1)). Let M = LOOP(c, p(c+ 1), e).
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M accepts ay such that y ≥ c(c+ 1)p− c− p(c+ 1) + 1 + e = (c− 1)(c+
1)p− c+ 1 + e. Note that

n < (c− 1)(c+ 1)p− c+ 1 + e < (n+
√
n) log kn+

√
n+O(1)

Hence there is a constant 1 < α < log kn + O(1) such that M accepts
{ay | y ≥ αn}. M may accept more strings. We need to show that M does
not accept an or akn.

If M accepts akn then

kn = C ′′(c) +D′′p(c+ 1) + e = C ′′c+ pD′′(c+ 1) + e

Since C and D are unique we have C = C ′′ and D = pD′′. But then p
divides D which is impossible.

If M accepts an then

n = C ′(c) +D′p(c+ 1) + c = C ′c+ pD′(c+ 1) + e

hence an is accepted by LOOP(c, c+ 1, e) which is impossible.
M has

p(c+ 1) ≤
√
n log kn+O(1) ≤ 2

√
n log n+O(1)

states.
By Case 1 and Case 2 there is an NFA satisfying the four conditions

above.

By Lemma 5.4 with A = {kn, n}, N = αn, ` = 2 there is an NFA M ′

such that (1) if M ′ rejects ay then y ∈ {kn, n} or y ≥ αn, (2) M ′ is of size
O(log2 αn) = O(log2(n log kn)) = Õ(1).

Our final NFA has a start state that has ε transitions to both M and M ′.
This clearly accepts MN(kn, n) and has 2

√
n log kn+ Õ(1) states.

Theorem 6.3 Let k ∈ Q with 1 < k. Let n be such that kn ∈ N. There is
an NFA for MN(n, kn) with 2

√
kn log n+ Õ(1) states.

Proof: Let m = kn. Note that n = m
k
∈ N. Let k′ = 1

k
. Note that

0 < k′ < 1. Apply Theorem 6.2 to (k′m,m) to get the result.
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7 A Small NFA for MN(A ∪B) where A� B

If A = {n, n2} then Theorem 6.1 yields an NFA of size O(n2) for MN(A).
This is not a small NFA. Is there a small NFA for MN(A)? Yes. In fact, we
state a theorem from which a small NFA for MN(A) is a corollary.

Theorem 7.1 Let A1 be a subset of N. Let `1 be the largest element of A1

and let `1 < `2. There is an NFA for MN(A1 ∪ {`2}) of size

≤ 2`2 +
√
`1 +O(log2(`1)).

Proof:
By Theorem 6.1 there is an NFA M ′ for MN(`1 − `2) of size√

`2 − `1 +O(log2(`2 − `1)) ≤
√
`2 +O(log2(`2)).

Let s be its start state. Take this NFA and (a) make s a non-start state
and call it r`1 , (b) add a (rejecting) start state r0 and a sequence of `1 − 1
reject states r1, r2, . . . , r`1−1, (c) add transitions δ(ri, a) = ri+1.

We call the new NFA M ′
1. Note that it accepts MN(0, 1, 2, . . . , `1, `2) and

has `1 +
√
`2 − `1 +O(log2(`2)) states.

Let M2 be the DFA that accepts {ay : y ≤ `1 ∧ y /∈ A1}. Note that M2

has `1 +O(1) states.
Our final NFA M has a start state with a transition to M ′

1 and M2. It
clearly accepts MN(A1 ∪ A2) and is of size

≤ 2`1 +
√
`2 +O(log2(`2))

Corollary 7.2 Let f be a function such that limn→∞
f(n)
n

= ∞ (so n �
f(n)). Let n be large. Let A be a set with largest element f(n) and second
largest element an. Then MN(A) has a small NFA.

Proof: The smallest DFA for MN(A) has f(n) + O(1) states. By Theo-
rem 7.1 there is an NFA M for MN(A) of size

2n+
√
f(n) +O(log2(f(n)))

Since n � f(n),
√
f(n) � f(n), log2 f(n) � f(n), M is a small NFA.
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8 MN(n, . . . , n + k − 1) requires ≥ max{k,
√
n}

States

Chrobak [3] proved the following.

Theorem 8.1 Let L be a co-finite unary regular language. If there is an
NFA for L with n states then there is an NFA for L of the following form:

• There is a sequence of ≤ n2 states from the start state to a state we
will call X. Note that there is no nondeterminism involved yet.

• From X there are ε transitions to X1, . . . , Xm. (This is nondetermin-
istic.)

• Each Xi is part of a cycle Ci. All of the Ci are disjoint.

Jeffery Shallit proved the following and emailed it to us.

Theorem 8.2

1. Let L be a cofinite unary language where the longest string that is not
in L is of length n. Then any NFA for L requires ≥

√
n states.

2. If A has least element n then any NFA for MN(A) has ≥
√
n states.

(This follows from part 1.)

Proof:
Assume there was an NFA with <

√
n states for L. Then by Theorem 8.1

there would be an NFA for L with a path from the start state to a state X
of length < n and then from X a branch to many cycles. Let Xi and cycle’s
Ci as described in Theorem 8.1.

Run an through the NFA and try out all paths. For each i there will be a
point in Ci that you end up at. Let ni be the length of Ci. For every i there
is a state on Ci that rejects. Hence the strings an+Kn1n2···nm are all rejected.
This is an infinite number of strings. This is a contradiction.

Theorem 8.3

1. Let L be a unary language such that there exists k, n with an, an+1, . . . , an+k−1 /∈
L and an+k ∈ L. Then any NFA for L has ≥ k states.
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2. Any NFA for MN(n, . . . , n+ k− 1) has ≥ k states. (This follows from
part 1.)

Proof:
Let q0 be the start state of an NFA that accepts L. Since an+k ∈ L there

is an accepting path of (not necessarily distinct) states

q0, q1, q2, . . . , qn, qn+1, . . . , qn+k−1, qn+k

such that δ(q0, a
i) = qi and qn+k is an accept state. Note that qn, . . . , qn+k−1

are all reject states. We show they are all different. If there exists n ≤ i <
j ≤ n+ k − 1 such that qi = qj then the computation path

q0, q1, q2, . . . , qn, . . . , qi, qj+1, . . . , qn+k−1, qn+k

accepts an+k−(j−i). Since 1 ≤ j− i ≤ k−1, n+1 ≤ n+k−(j− i) ≤ n+k−1.
Hence an+k−(j−i) /∈ L, which contradicts it being accepted.

Theorem 8.4 Any NFA for MN(n, . . . , n+k−1) has ≥ max{k,
√
n} states.

Proof: This follows from Theorems 8.3 and 8.2.

9 Open Problems

1) Open Problem I:
Let 0 < ε < δ < 1 where δ > 1

2
and δ = 2ε. A ⊆ {n, . . . , n + O(nδ)} of

size O(nε).

1. By Theorem 6.1 there exists an NFA for MN(A) with ≤ 2nmax{1/2,δ} +
Õ(nmin{2ε,δ}) = O(nδ) states.

2. By Theorem 8.3 any NFA for MN(A) has ≥ Ω(n1/2) states.

Since 1/2 < δ there is a gap between he upper and lower bounds on the
number of states for the minimal NFA for MN(A). We would like to narrow
or close the gap between upper and lower bounds. We tend to think the
upper bounds are close to optimal.

II) Open Problem II:
Consider MN(1000). We know there is an NFA of size 59. By Theorem 8.3

any NFA is of size ≥ 33. It would be of interest to narrow the gap in this
and other concrete cases.
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