An Language you cannot prove not regular by Pumping (Allegedly)

Ehrenfeucht, et al [1] exhibit, for all languages $Z \subseteq \{1,2\}^*$ a languages L_Z (the mapping Z goes to L_Z is injective) such that L_Z cannot be proven not regular by the Pumping Lemma (they show this for a rather advanced version of the pumping lemma). Since most of these L_Z are not regular, this would seem show there are many non-regular languages that cannot be proven non-regular by the pumping lemma. In this note we show that, using closure properties and a simple form of the pumping lemma, the languages L_Z that are non-regular can be proven to be non-regular.

Notation 0.1

 Σ is the 16-letter alphabet $\{(i, j) : 0 \le i, j \le 3\}$. $f_1 : \Sigma \to \Sigma$ is defined by

$$f_1((i,j)) = (i + 1 \pmod{4}, j)$$

 $f_2: \Sigma \to \Sigma$ be defined by

$$f_2((i,j)) = (i, j + 1 \pmod{4})$$

Note that $f_1(f_2(\sigma)) \neq f_2(f_1(\sigma))$.

Def 0.2 A string x is *legal* if

- 1. $x = (\sigma_1)^{n_1} (\sigma_2)^{n_2} \cdots (\sigma_m)^{n_m}$ where $n_1, n_2, \dots, m \ge 1$.
- 2. $\sigma_1 = (0, 0)$.
- 3. For all $2 \leq i \leq m$, either $\sigma_i = f_1(\sigma_{i-1})$ or $\sigma_i = f_2(\sigma_{i-1})$.

Example:

$$(0,0)(1,0)(1,0)(1,0)(2,0)(2,1)(3,1)(0,1)$$

We associate to every legal string the sequence of transitions that cause σ_i to go to σ_{i+1} , called the code string. Note that above:

 $f_1(0,0) = (1,0)$ $f_1(1,0) = (2,0)$ $f_2(2,0) = (2,1)$ $f_1(2,1) = (3,1)$ $f_1(3,1) = (0,1).$ So we associate code string 11211.

Lets go in the other direction: We give legal strings with code string 11211:

$$(0,0)\{(1,0)\}^{\geq 1}\{(2,0)\}^{\geq 1}\{(2,1)\}^{\geq 1}\{(3,1)\}^{\geq 1}\{(0,1)\}^{\geq 1}$$

Def 0.3 Let $x \in \Sigma^*$. The parity of x is the parity of the sum of all of the components of x.

Example: The parity of

$$(0,0)(1,0)(1,0)(1,0)(2,0)(2,1)(3,1)(0,1)$$

is

$$0 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 2 + 0 + 2 + 1 + 3 + 1 + 0 + 1 \pmod{2} = 1.$$

Def 0.4 Let $Z \subseteq \{1, 2\}^*$. Let

 $L_Z = \{x : x \text{ is legal and } (\exists z \in Z) [x \text{ has code strings z}] \} \cup \{x : x \text{ is not legal and parity}(x) = 0\}$

We leave the following easy theorem to the reader.

Theorem 0.5 If Z is regular than L_Z is regular.

Ehrenfeucht, et al [1] prove that, for all Z, L_Z cannot be proven non-regular using the pumping lemma. Since there are an uncountable number of Z, and each Z gives a different L_Z , there are an uncountable number of non-regular languages that cannot be proven not-regular by the pumping lemma.

We use closure properties to show that if L_Z is regular than Z is regular.

Def 0.6 Let Σ_1 and Σ_2 be finite alphabets. Let $F : \Sigma_1 \times \Sigma_1 \to \Sigma_2$. We extend F, first to Σ_1^* , second to all subsets of Σ_1^* .

1. Let $F: \Sigma_1^* \to \Sigma_2^*$ be defined by

$$F(\sigma_1\sigma_2\sigma_3\sigma_4\cdots\sigma_n) = f(\sigma_1\sigma_2)f(\sigma_2\sigma_3)\cdots f(\sigma_{n-2}\sigma_{n-1})f(\sigma_{n-1}\sigma_n).$$

2. Let $F: 2^{\sum_{1}^{*}} \to 2^{\sum_{2}^{*}}$ be defined by

$$F(L) = \{f(x) : x \in L\}.$$

Lemma 0.7 Let Σ_1 and Σ_2 be finite alphabets. Let $f : \Sigma_1 \times \Sigma_1 \to \Sigma_2$. Let F be as in definition 0.6. Let $L \subset \Sigma_1^*$ such that If L is regular then F(L) is regular.

Theorem 0.8 Let $Z \subseteq \{0,1\}^*$. If L_Z is regular then Z is regular.

Proof: Assume $L = L_Z$ is regular. Note that

$$PAR1 = \{x : x \text{ has parity } 1 \}$$

is regular. Hence

 $L' = L \cap PAR1 = \{x : x \text{ is legal and } x \text{ has parity } 1 \text{ and } (\exists z \in Z) [x \text{ has code strings } z]\}$

is regular.

Let

$$NOD = \{x = \sigma_1 \cdots \sigma_n : (\forall i \le n-1) | \sigma_i \ne \sigma_{i+1}\}$$

(*NOD* stands for NO Doubles.) Note that *NOD* is regular. Hence $L' \cap NOD$ is regular. If $x \in L' \cap NOD$ then the following hold:

- 1. $x = \sigma_1 \sigma_2 \cdots \sigma_m$ where, for all $1 \le i \le m 1$, $\sigma_i \ne \sigma_{i+1}$.
- 2. $\sigma_1 = (0, 0)$.
- 3. For all $2 \leq i \leq m$, either $\sigma_i = f_1(\sigma_{i-1})$ or $\sigma_i = f_2(\sigma_{i-1})$.
- 4. x has parity 1.
- 5. x codes z.

One can easily construct a DFA for Z from a DFA for $L' \cap NOD$. Hence Z is regular.

References

 A. Ehrenfeucht, R. Parikh, and G. Rozenberg. Pumping lemmas for regular sets. SIAM J. Comput., 10(3):536–541, 1981.