An Language you cannot prove not regular by Pumping (Allegedly)

Ehrenfeucht, et al [1] exhibit, for all languages $Z \subseteq\{1,2\}^{*}$ a languages L_{Z} (the mapping Z goes to L_{Z} is injective) such that L_{Z} cannot be proven not regular by the Pumping Lemma (they show this for a rather advanced version of the pumping lemma). Since most of these L_{Z} are not regular, this would seem show there are many non-regular languages that cannot be proven non-regular by the pumping lemma. In this note we show that, using closure properties and a simple form of the pumping lemma, the languages L_{Z} that are non-regular can be proven to be non-regular.

Notation 0.1

Σ is the 16 -letter alphabet $\{(i, j): 0 \leq i, j \leq 3\}$.
$f_{1}: \Sigma \rightarrow \Sigma$ is defined by

$$
f_{1}((i, j))=(i+1(\bmod 4), j)
$$

$f_{2}: \Sigma \rightarrow \Sigma$ be defined by

$$
f_{2}((i, j))=(i, j+1(\bmod 4))
$$

Note that $f_{1}\left(f_{2}(\sigma)\right) \neq f_{2}\left(f_{1}(\sigma)\right)$.
Def 0.2 A string x is legal if

1. $x=\left(\sigma_{1}\right)^{n_{1}}\left(\sigma_{2}\right)^{n_{2}} \cdots\left(\sigma_{m}\right)^{n_{m}}$ where $n_{1}, n_{2}, \ldots, m \geq 1$.
2. $\sigma_{1}=(0,0)$.
3. For all $2 \leq i \leq m$, either $\sigma_{i}=f_{1}\left(\sigma_{i-1}\right)$ or $\sigma_{i}=f_{2}\left(\sigma_{i-1}\right)$.

Example:

$$
(0,0)(1,0)(1,0)(1,0)(2,0)(2,1)(3,1)(0,1)
$$

We associate to every legal string the sequence of transitions that cause σ_{i} to go to σ_{i+1}, called the code string. Note that above:

$$
\begin{aligned}
& f_{1}(0,0)=(1,0) \\
& f_{1}(1,0)=(2,0) \\
& f_{2}(2,0)=(2,1) \\
& f_{1}(2,1)=(3,1) \\
& f_{1}(3,1)=(0,1) .
\end{aligned}
$$

So we associate code string 11211.
Lets go in the other direction: We give legal strings with code string 11211:

$$
(0,0)\{(1,0)\}^{\geq 1}\{(2,0)\}^{\geq 1}\{(2,1)\}^{\geq 1}\{(3,1)\}^{\geq 1}\{(0,1)\}^{\geq 1}
$$

Def 0.3 Let $x \in \Sigma^{*}$. The parity of x is the parity of the sum of all of the components of x.

Example: The parity of

$$
(0,0)(1,0)(1,0)(1,0)(2,0)(2,1)(3,1)(0,1)
$$

is

$$
0+0+1+0+1+0+1+0+2+0+2+1+3+1+0+1 \quad(\bmod 2)=1
$$

Def 0.4 Let $Z \subseteq\{1,2\}^{*}$. Let
$L_{Z}=\{x: x$ is legal and $(\exists z \in Z)[x$ has code strings $z]\} \cup\{x: x$ is not legal and parity $(x)=0\}$
We leave the following easy theorem to the reader.
Theorem 0.5 If Z is regulr than L_{Z} is regular.
Ehrenfeucht, et al [1] prove that, for all Z, L_{Z} cannot be proven non-regular using the pumping lemma. Since there are an uncountable number of Z, and each Z gives a different L_{Z}, there are an uncountable number of non-regular languages that cannot be proven not-regular by the pumping lemma.

We use closure properties to show that if L_{Z} is regular than Z is regular.
Def 0.6 Let Σ_{1} and Σ_{2} be finite alphabets. Let $F: \Sigma_{1} \times \Sigma_{1} \rightarrow \Sigma_{2}$. We extend F, first to Σ_{1}^{*}, second to all subsets of Σ_{1}^{*}.

1. Let $F: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ be defined by

$$
F\left(\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \cdots \sigma_{n}\right)=f\left(\sigma_{1} \sigma_{2}\right) f\left(\sigma_{2} \sigma_{3}\right) \cdots f\left(\sigma_{n-2} \sigma_{n-1}\right) f\left(\sigma_{n-1} \sigma_{n}\right)
$$

2. Let $F: 2^{\Sigma_{1}^{*}} \rightarrow 2^{\Sigma_{2}^{*}}$ be defined by

$$
F(L)=\{f(x): x \in L\} .
$$

Lemma 0.7 Let Σ_{1} and Σ_{2} be finite alphabets. Let $f: \Sigma_{1} \times \Sigma_{1} \rightarrow \Sigma_{2}$. Let F be as in definition 0.6. Let $L \subset \Sigma_{1}^{*}$ such that If L is regular then $F(L)$ is regular.

Theorem 0.8 Let $Z \subseteq\{0,1\}^{*}$. If L_{Z} is regular then Z is regular.
Proof: Assume $L=L_{Z}$ is regular. Note that

$$
P A R 1=\{x: x \text { has parity } 1\}
$$

is regular. Hence

$$
L^{\prime}=L \cap P A R 1=\{x: x \text { is legal and } x \text { has parity } 1 \text { and }(\exists z \in Z)[x \text { has code strings } z]\}
$$

is regular.
Let

$$
N O D=\left\{x=\sigma_{1} \cdots \sigma_{n}:(\forall i \leq n-1)\left[\sigma_{i} \neq \sigma_{i+1}\right\}\right.
$$

(NOD stands for NO Doubles.)
Note that $N O D$ is regular. Hence
$L^{\prime} \cap N O D$ is regular. If $x \in L^{\prime} \cap N O D$ then the following hold:

1. $x=\sigma_{1} \sigma_{2} \cdots \sigma_{m}$ where, for all $1 \leq i \leq m-1, \sigma_{i} \neq \sigma_{i+1}$.
2. $\sigma_{1}=(0,0)$.
3. For all $2 \leq i \leq m$, either $\sigma_{i}=f_{1}\left(\sigma_{i-1}\right)$ or $\sigma_{i}=f_{2}\left(\sigma_{i-1}\right)$.
4. x has parity 1 .
5. x codes z.

One can easily construct a DFA for Z from a DFA for $L^{\prime} \cap N O D$. Hence Z is regular.

References

[1] A. Ehrenfeucht, R. Parikh, and G. Rozenberg. Pumping lemmas for regular sets. SIAM J. Comput., 10(3):536-541, 1981.

