Even Perfect Numbers and Sums of Odd Cubes
 Exposition by William Gasarch

1 Introduction

Recall that a prefect number is equal to the sum of its divisors if you include 1 as a divisors. The first four prefect numbers are

6

$$
\begin{aligned}
& 28=1^{3}+3^{3} \\
& 496=1^{3}+3^{3}+5^{3}+7^{3} \\
& 8128=1^{3}+3^{3}+\cdots+15^{3}
\end{aligned}
$$

Is there something interesting going on here?
We show that if n is an even perfect number than there exists k such that n is the sum of the first k odd cubes. We then discuss if this is interesting or not.

Nothing in this manuscript is due to me.

2 Needed Theorems

We rely on two well known theorems. We include their proofs for completeness For the first one we need a lemma

Def 2.1 $\sigma(n)$ is the sum of the divisors of n including both 1 and n. Note that a numbers is perfect iff $\sigma(n)=2 n$.

Lemma 2.2

1. $\sigma(a b)=\sigma(a) \sigma(b)$.
2. For all $x, \sigma\left(2^{x}\right)=2^{x+1}-1$.

Proof:

1) Use the following: If $a=\prod_{i=1}^{n} p_{i}^{a_{i}}$ and $b=\prod_{i=1}^{n} p_{i}^{b_{i}}$ then (some of the a_{i} and b_{i} 's might be zero.)

$$
\begin{aligned}
\sigma(a) & =\sum_{j_{1}=0}^{a_{i_{1}}} \sum_{j_{2}=0}^{a_{j_{2}}} \cdots \sum_{j_{n}=0}^{a_{j_{n}}} \prod_{j=1}^{n} p_{i}^{a_{j_{i}}} \\
\sigma(b) & =\sum_{j_{1}=0}^{b_{j_{1}}} \sum_{j_{2}=0}^{b_{i_{2}}} \cdots \sum_{j_{n}=0}^{b j_{n}} \prod_{j=1}^{n} p_{i}^{a_{j_{i}}}
\end{aligned}
$$

2) Follows from part 1 .

The following is the Euclid-Euler theorem since Euclid proved one direction, and Euler the other.

Theorem $2.3 n$ is an even perfect number iff there exists p such that $2^{p}-1$ is prime and $n=$ $2^{p-1}\left(2^{p}-1\right)$. (The number p will also be prime since if $2^{p}-1$ is prime then p is a prime. We do not need this fact.)

Proof:

1) If n is an even perfect number then here exists p such that $2^{p}-1$ is prime and $n=2^{p-1}\left(2^{p}-1\right)$.

Assume n is an even perfect number. n is even so there exists $p \geq 2$ and b odd such that $n=2^{p-1} b$. n is perfect so $\sigma(n)=2 n=2^{p} b$. By Lemma 2.2 $\sigma(n)=\sigma\left(2^{p-1}\right) \sigma(b)=\left(2^{p}-1\right) \sigma(b)$. Equating these two different expressions for $\sigma(n)$ we obtain

$$
\text { (*) } \quad 2^{p} b=\left(2^{p}-1\right) \sigma(b) .
$$

Since $2^{p}-1$ divides $2^{p} b$ and has no factors in common with $2^{p}, 2^{p}-1$ divides b. Let $b=$ $\left(2^{p}-1\right) c$. Substituting this expression for b into equation $*$ yields

$$
2^{p}\left(2^{p}-1\right) c=\left(2^{p}-1\right) \sigma(b)
$$

$$
2^{p} c=\sigma(b)
$$

Since c divides b and (of course) b divides $b, \sigma(b) \geq b+c$. Hence

$$
2^{p} c=\sigma(b) \geq b+c=\left(2^{p}-1\right) c+c=2^{p} c
$$

Hence $\sigma(b)=b+c$. Since $\sigma(b) \geq b+1$ (b and 1 both divide b) we have $c=1$ so $\sigma(b)=b+1$, hence $b=2^{p}-1, b$ is prime, and $n=2^{p}\left(2^{p}-1\right)$.
2) If $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime then n is perfect.

$$
\sigma(n)=\sigma\left(2^{p-1}\left(2^{p}-1\right)\right)=\sigma\left(2^{p-1}\right) \sigma\left(2^{p}-1\right)=\left(2^{p}-1\right)\left(1+\left(2^{p}-1\right)\right)=2^{p}\left(2^{p}-1\right)=2 \times 2^{p-1}\left(2^{p}-1\right)=2 n .
$$

Theorem 2.4 For all $m \geq 1, \sum_{i=0}^{m-1}(2 i+1)^{3}=m^{2}\left(2 m^{2}-1\right)$.

How you would derive this

We are not going to do a standard proof by induction. Instead we discuss how you might derive this by hand with a minimum of calculation.

Since $\sum_{i=0}^{m-1}(2 i+1)^{3}$ is approximately $\int_{1}^{m-1}(2 x+1)^{3} d x$ we can guess that the lead term is a polynomial of degree 4 with lead term $2 m^{4}$. So we need to find b, c, d, e such that

$$
\sum_{i=0}^{m-1}(2 i+1)^{3}=2 m^{4}+b m^{3}+c m^{2}+d m+e
$$

Since when $m=0$ the sum is 0 we get $e=0$.
From here there are two ways to proceed: (1) plug in $m=1,2,3$ to get three linear equations in three variables. (2) do a proof by induction and see what the proof forces b, c, d to be.

End of How you would derive this

3 The Main Theorem

Theorem 3.1 If n is an even perfect number then there exists m such that n is the sum of the first $m-1$ odd cubes.

Proof:

By Theorem 2.3 there exists p such that $2^{p}-1$ is prime and $n=2^{p-1}\left(2^{p}-1\right)$. Let $m-1=$ $2^{(p-1) / 2}$.

By Theorem 2.4

$$
\sum_{i=0}^{m-1}(2 i+1)^{3}=m^{2}\left(2 m^{2}-1\right)=\left(2^{(p-1) / 2}\right)^{2}\left(2 \times\left(2^{(p-1) / 2}\right)^{2}-1\right)=2^{p-1} \times\left(2^{p}-1\right)=n
$$

We never used that $2^{p}-1$ is prime. We never used that n is perfect. We did use that p is odd (so that $p-1$ is even). Hence we have the following theorem.

Theorem 3.2 If n is of the form $2^{p-1}\left(2^{p}-1\right)$ where p is odd then n is the sum of the first $(p-1) / 2$ odd squares.

Even though this is more general it somehow sounds less interesting.

