Even Perfect Numbers and Sums of Odd Cubes

Exposition by William Gasarch
1 Introduction

Recall that a prefect number is equal to the sum of its divisors if you include 1 as a divisors. The
first four prefect numbers are

6

28 =1%+3°

496 =12+ 3%+ 53 + 7

8128 = 1° + 3% +--- 4+ 15°

Is there something interesting going on here?

We show that if n is an even perfect number than there exists k£ such that n is the sum of the
first k£ odd cubes. We then discuss if this is interesting or not.

Nothing in this manuscript is due to me.
2 Needed Theorems

We rely on two well known theorems. We include their proofs for completeness For the first one

we need a lemma
Def 2.1 o(n) is the sum of the divisors of n including both 1 and n. Note that a numbers is perfect

iff o(n) = 2n.

Lemma 2.2
1. o(ab) = o(a)o(b).

2. Forall x, o(2%) = 2T — 1,



Proof:
1) Use the following: If a = [["_, p% and b = []_, p! then (some of the a; and b;’s might be

Zero.)
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2) Follows from part 1.

The following is the Euclid-Euler theorem since Euclid proved one direction, and Euler the

other.

Theorem 2.3 n is an even perfect number iff there exists p such that 2° — 1 is prime and n =
2P=1(2P — 1). (The number p will also be prime since if 27 — 1 is prime then p is a prime. We do

not need this fact.)

Proof:

1) If n is an even perfect number then here exists p such that 27 — 1 is prime and n = 2P~1(2F — 1).
Assume n is an even perfect number. n is even so there exists p > 2 and b odd such that

n = 2P~1b. n is perfect so o(n) = 2n = 2Pb. By Lemma 2.2 0(n) = o(2°"1)o(b) = (2P — 1)o(b).

Equating these two different expressions for o(n) we obtain

(x) 2% = (2" — 1)o(D).

Since 2P — 1 divides 2Pb and has no factors in common with 2P, 2 — 1 divides b. Let b =

2P — 1)e¢. Substituting this expression for b into equation * yields
g p q y



(20 — 1)c = (2° — 1)o(b)

2Pc = o (b)

Since ¢ divides b and (of course) b divides b, o(b) > b+ c¢. Hence

c=0b)>b+c= (2P —1)c+c =2

Hence o(b) = b+ c. Since o(b) > b+ 1 (b and 1 both divide b) we have ¢ = 1so o(b) = b+ 1,
hence b = 2P — 1, b is prime, and n = 2P(2F — 1).

2) If n = 2P~1(2P — 1) where 27 — 1 is prime then n is perfect.

o(n) =o(2PH(2P-1)) = (2P (2P —1) = (2P—1)(1+(2P—1)) = 2P(2P—1) = 2x 2P~ }(2P 1) = 2n.

Theorem 2.4 Forallm > 1, 3.7 1 (2i + 1) = m?(2m? — 1).

How you would derive this

We are not going to do a standard proof by induction. Instead we discuss how you might derive
this by hand with a minimum of calculation.

Since 37! (2i + 1)? is approximately flm_1(2x + 1)3dx we can guess that the lead term is a

polynomial of degree 4 with lead term 2m?. So we need to find b, ¢, d, e such that

[y

(2i + 1) = 2m* + bm® + em? +dm + e
0
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Since when m = 0 the sum is 0 we get e = 0.
From here there are two ways to proceed: (1) plug in m = 1, 2, 3 to get three linear equations
in three variables. (2) do a proof by induction and see what the proof forces b, c, d to be.

End of How you would derive this
3 The Main Theorem

Theorem 3.1 If n is an even perfect number then there exists m such that n is the sum of the first

m — 1 odd cubes.

Proof:
By Theorem 2.3 there exists p such that 27 — 1 is prime and n = 2P71(2P — 1). Letm — 1 =

9-1)/2.

By Theorem 2.4
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(20 +1)3 =m?(2m? — 1) = (2P V/2)2(2 x (2P V22 _ )y = r7 L x (2P —1) =n
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We never used that 2”7 — 1 is prime. We never used that n is perfect. We did use that p is odd

(so that p — 1 is even). Hence we have the following theorem.

Theorem 3.2 If n is of the form 2P~1(2F — 1) where p is odd then n is the sum of the first (p—1) /2

odd squares.

Even though this is more general it somehow sounds less interesting.



