
Even Perfect Numbers and Sums of Odd Cubes

Exposition by William Gasarch

1 Introduction

Recall that a prefect number is equal to the sum of its divisors if you include 1 as a divisors. The

first four prefect numbers are

6

28 = 13 + 33

496 = 13 + 33 + 53 + 73

8128 = 13 + 33 + · · ·+ 153

Is there something interesting going on here?

We show that if n is an even perfect number than there exists k such that n is the sum of the

first k odd cubes. We then discuss if this is interesting or not.

Nothing in this manuscript is due to me.

2 Needed Theorems

We rely on two well known theorems. We include their proofs for completeness For the first one

we need a lemma

Def 2.1 σ(n) is the sum of the divisors of n including both 1 and n. Note that a numbers is perfect

iff σ(n) = 2n.

Lemma 2.2

1. σ(ab) = σ(a)σ(b).

2. For all x, σ(2x) = 2x+1 − 1.
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Proof:

1) Use the following: If a =
∏n

i=1 p
ai
i and b =

∏n
i=1 p

bi
i then (some of the ai and bi’s might be

zero.)

σ(a) =

ai1∑
j1=0

aj2∑
j2=0

· · ·
ajn∑
jn=0

n∏
j=1

p
aji
i

σ(b) =

bj1∑
j1=0

bi2∑
j2=0

· · ·
bjn∑
jn=0

n∏
j=1

p
aji
i

2) Follows from part 1.

The following is the Euclid-Euler theorem since Euclid proved one direction, and Euler the

other.

Theorem 2.3 n is an even perfect number iff there exists p such that 2p − 1 is prime and n =

2p−1(2p − 1). (The number p will also be prime since if 2p − 1 is prime then p is a prime. We do

not need this fact.)

Proof:

1) If n is an even perfect number then here exists p such that 2p− 1 is prime and n = 2p−1(2p− 1).

Assume n is an even perfect number. n is even so there exists p ≥ 2 and b odd such that

n = 2p−1b. n is perfect so σ(n) = 2n = 2pb. By Lemma 2.2 σ(n) = σ(2p−1)σ(b) = (2p − 1)σ(b).

Equating these two different expressions for σ(n) we obtain

(∗) 2pb = (2p − 1)σ(b).

Since 2p − 1 divides 2pb and has no factors in common with 2p, 2p − 1 divides b. Let b =

(2p − 1)c. Substituting this expression for b into equation ∗ yields
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2p(2p − 1)c = (2p − 1)σ(b)

2pc = σ(b)

Since c divides b and (of course) b divides b, σ(b) ≥ b+ c. Hence

2pc = σ(b) ≥ b+ c = (2p − 1)c+ c = 2pc

Hence σ(b) = b+ c. Since σ(b) ≥ b+1 (b and 1 both divide b) we have c = 1 so σ(b) = b+1,

hence b = 2p − 1, b is prime, and n = 2p(2p − 1).

2) If n = 2p−1(2p − 1) where 2p − 1 is prime then n is perfect.

σ(n) = σ(2p−1(2p−1)) = σ(2p−1)σ(2p−1) = (2p−1)(1+(2p−1)) = 2p(2p−1) = 2×2p−1(2p−1) = 2n.

Theorem 2.4 For all m ≥ 1,
∑m−1

i=0 (2i+ 1)3 = m2(2m2 − 1).

How you would derive this

We are not going to do a standard proof by induction. Instead we discuss how you might derive

this by hand with a minimum of calculation.

Since
∑m−1

i=0 (2i + 1)3 is approximately
∫ m−1

1
(2x + 1)3dx we can guess that the lead term is a

polynomial of degree 4 with lead term 2m4. So we need to find b, c, d, e such that

m−1∑
i=0

(2i+ 1)3 = 2m4 + bm3 + cm2 + dm+ e
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Since when m = 0 the sum is 0 we get e = 0.

From here there are two ways to proceed: (1) plug in m = 1, 2, 3 to get three linear equations

in three variables. (2) do a proof by induction and see what the proof forces b, c, d to be.

End of How you would derive this

3 The Main Theorem

Theorem 3.1 If n is an even perfect number then there exists m such that n is the sum of the first

m− 1 odd cubes.

Proof:

By Theorem 2.3 there exists p such that 2p − 1 is prime and n = 2p−1(2p − 1). Let m − 1 =

2(p−1)/2.

By Theorem 2.4

m−1∑
i=0

(2i+ 1)3 = m2(2m2 − 1) = (2(p−1)/2)2(2× (2(p−1)/2)2 − 1) = 2p−1 × (2p − 1) = n

We never used that 2p − 1 is prime. We never used that n is perfect. We did use that p is odd

(so that p− 1 is even). Hence we have the following theorem.

Theorem 3.2 If n is of the form 2p−1(2p−1) where p is odd then n is the sum of the first (p−1)/2

odd squares.

Even though this is more general it somehow sounds less interesting.
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