Approximating 7, and In(2) Using Integrals
by William Gasarch

1 What Here Is New? Not Much

As I was finishing this manuscript, I came across an excellent paper by Frits Beukers [1]
which has everything I have about 7 and much more. He does not discuss In(2). The only
change I made was to add this paragraph and use his terminology about approximating
irrationals in the sections where I approximate 7 and In(2).

2 An Integral that Shows 2—72 ~ T

Problem A-1 on the Putnam Exam in 1968 was:
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Can we show how good an approximation %= is to 7 using this integral? We give a lemma

that will be useful for this and later in the paper.

Lemma 2.1 For all n,
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Proof:  Since the integral is non-negative on [0, 1], we have the lower bound.
Since
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By letting n = 4 we find that 0 < = — 7 < .
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In this paper we look at how fol dx can help us approximate 7 and In(2) with

error bounds.

3 The Non-Polynomial Part of %

Let fn(z) = % To integrate this you would use partial fractions to express it as a
polynomial plus a non-polynomial part. The non-polynomial part ends up being a linear
combination of w%ﬂ, which has integral arctan(z), and "5, which has integral tIn(z? +1).
It is this non-polynomial part that leads to m and In(2).

We give a table of the non-polynomial parts of f,(z), along with the integral from 0 to

1 of that non-polynomial part.



n | nonpoly i fol

0 | = arctan(x) z

1| 25+ 255 | arctan(z) + 5 In(2? + 1) T+ 1In(2)

2 | 25 In(z? + 1) In(2)

3 | -4 + #%5 | —2arctan(z) + In(2? + 1) -2+ 1n(2)

4 —x%ﬂ —4 arctan(x) —T

5 |~y — g | —darctan(z) —2In(a? +1) | -7 —2In(2)

6 | —25 —41n(2? + 1) —41n(2)

7T | =5 — 25 | Sarctan(z) — 4In(2? + 1) 21 — 41n(2)
peam 16 arctan(x) Amr
=% + % | 16arctan(x) + 81n(2? + 1) 4 + 81n(2)

10 55251 161n(z? + 1) 161n(2)

11| =% + 2% | —32arctan(z) + 16In(2> + 1) | =87 + 161n(2)

12 | — xfil —64 arctan(x) —8m

13 | =25 — 3% | —64arctan(z) — 32In(2? + 1) | =167 — 321n(2)

14| -8 —641n(2? + 1) —641n(2)

15| — ;gjﬁ x122f1 —64 arctan(x) + 128 arctan(z) | —641n(2) + 327

4 The Non-Polynomial Part is Always ...

We show that the behavior in the table of the last section always holds.

Theorem 4.1 There exists a sequence of polynomials pg, p1, P2, - . .
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dx = pgi(z) + 2% arctan(x).

dr = p8k+2( ) + 24k 111(562 + 1)

such that

dr = pgpy1(z) + 2% arctan(z) + 2% n(z? + 1).




4 f E;Hggng ki dx = pgry3(T) — 24k arctan(x) + 2% 1n(x2 +1).

5. f x8k+4(é+f )i dr = P8k+4-4 (l') - 24k+2 arCtan<x>'

6 f x8k+5£;+313 )Bk+5 dr — p8k+5( ) o 24k+2 arctan(x) _ 24k+1 ln(x2 + 1).

18k+6 T 8k+6
7. f (%-i-l dr = p8k+6( ) — Q4k+2 1H(£L‘2 -+ 1)

s f xsk+7$+f )8R+ dr — p8k+7( ) _ 94k+3 arctan(m) + 94k+2 1n(:(:2 + 1).
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Proof: Let 0 < a < 7and k € N. We seek the non-polynomial part of = x2+1
Hence we want to know A, B such that there is a polynomial p with

$8k+a(1 _ x>8k+a Ax + B
N iR
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In order for this to be polynomial, 2% 4 1 must divide the numerator. So i and —i must

be roots of the numerator. Since ¢ and —7 are conjugate, we only need that ¢ is a root. Thus
we need A, B such that the following quantity is 0.

= p()

'8k+a(1

i — )%t Ai — B =q2%(1 —i)*— Ai - B

There are eight cases: 0 < a < 7. We do the a = 0 and a = 1 cases. The rest are similar.
Case a = 0: We need 2% — Ai — B =0, s0 A = 0 and B = 2%. Hence there is some
polynomial p such that

x8k(1 o x)&’c 24k

Let psi(x) be the integral of p(x). We have

8k 1 — 8k
/ %dm = psi(x) + 24k arctan(zx).

Case a = 1: We need i2*(1 —i) — Ai — B =0, so A = 2% and B = 2*%. Hence there is
some polynomial p such that

$8k+1(1 _ x)8k+1 24k

2+ 1



Let psr+1(x) be the integral of p(z). We have
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dr = pspy1(x) + 241 n (22 4 1)+ o4k arctan(z).

5 Approximating 7= and In(2)
We use Theorem 4.1 to approximate m. By similar techniques one can approximate In(2).

1. Input n (we want 7 within 2%) and indicate if you want your approximation to be
bigger or smaller than 7.

2. Let k = [Q%W If you requested bigger, then use 8k in the next step (as we do). If you
requested smaller, then use 8k + 4 in the next step (which we leave as an exercise).

3. Find [ %dz. It will be of the form p(z) + 2% arctan(z). By Lemma 2.1

8% (1 — )%k 1
0< /0 xQ——i—ldw = p(1) +2%7 —p(0) < 16k

4. Output %.

6 Approximating 7: Actual Numbers

We used our methods on n = 0 (mod 4) to approximate 7. Frits Beukers [1] measures how
good a rational approximation § to irrational «v is by the largest M such that

- —w
q

All irrationals have a rational approximation with M = 2; however, it is often hard to
find it. Let’s see how we do with our approximation to w. Spoiler Alert: Not that well.
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a ngo%dxgﬁ SO M
0]0<27%1 <5 0<nm<2?
410<2 -2 < 5 0<Z-71<5%

2 188684 1 188684 1
810<2"r— 515 <36 | 07— Gooe0 = 5%

We consider an example with a large n = 0 (mod 4). We look at n = 48.

148 48
(1 —x) 1
0< ——— dr < —
_/0 1ra? = 2%

Using Wolfram Alpha with n = 48 we quickly obtained:
~ 213542611814037671066876069468816372753444 < 1

162059603838719664345344574554 71575 — 297

0<2%rn
Hence we have

0 < 2135426118140376710668760694688163 72753444 < 1
= 67972724461915724304233613043314248008800 | — 2118~

This yields M ~ 0.87.

7 Approximating In(2): Actual Numbers

We used our methods on n = 0 (mod 4) to approximate m. We use M to measure the
closeness of the approximation as in the last section.

0< [ T < L [so Vi
0<In(2)—-35<2 0<In(2)-2<%

38429 1 38429 1
0<i5e0 —4In2) < o5 |0< 5550 —In(2) < 9
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0 1+a?
n answer SO approx
0 |%-0 >0 0
1| =1+7%+5In(2) 7+ 2In(2) > 4 4
2 |In(2) — 2 In(2) > 2 0.66666666666
3 |2 -2+In(2) m—2In(2) < 33 1.76666666666
4 |27 <2 3.14285714286
5 | EH —2In(2) -7 T+ 2In(2) < 444 4.52817460317
6 |32 _41n(2) In(2) < 2828 0.69316378066
7 | - —4n(2) + 27 T —2In(2) > 2250 175529054279
8 | d4m — 13805 m > Sl 3.14159174159
9 | — bty 47 +8In(2) T+ 21In(2) > L0 4.52788679866
10 | 161n(2) — 290876020 In(2) > 1239870029 0.69314716769
11 | 8200 — 87 + 161n(2) 7 —21n(2) < 520199 1.75529829862
12 | BBEEL 167 T < 23159272 3.14159265433
13 | 133220008889 — 167 — 321n(2) T+ 21n(2) < LEO0TIT039 4.52788701489
14 | 36281799021 _ 64 1n(2) In(2) < 256281790021 0.69314718057
15 | — 1305500018 2007 + 327 — 641n(2) T —21In(2) > SRRSO 1.75529829246
16 | 647 — 233958700812 T > SESOST0TE 3.14159265359
17 | — > + 64 + 128 1In(2) T+ 21n(2) > 319800007T62613 2.26394350735
18 | 2561n(2) — 123 In(2) > A 0.69314718056
19 | USRI 1287 4 256In(2) | m— 2In(2) < USRI | 175520820247
20) | 2NN _ 95 ™ < g, 314159265359
21 | SEIDUMIMIT _ 956r —512In(2) | 7+ 21n(2) < AMMSEBMNLT | 450788701471
22 | BZUBUSSILS _ 10241n(2) In(2) < gREubisesen, | 0.69314718056
23 | — S maosonaosen . + 0127 — 10241n(2) | m — 2In(2) > siiEenimmaaonars | 175529829247
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