
If P=NP Then There Is
a Program For SAT

William Gasarch

Fear

What if P=NP but the proof is nonconstructive so that we don’t
have an algorithm?

1. Good News: If P=NP then ∃ program you can write that will
decide a finite variant of SAT in P-time.

2. Good News: You can write the program NOW!

3. Good News?: The finite number of fml the program is
WRONG on are NOT in SAT.

4. Bad News: The program is completely impractical.

5. Factoring: Similar except that the program is always right.

6. Credit: The result on SAT is attributed to Levin.

7. Credit: The result on factoring I did this morning though I am
sure its known.

Setting up The Program for SAT

1) If P=NP then there is a poly-time program for F :
Input:φ
Output:

NO if φ /∈ SAT
Lex Least ~x such that φ(~x) = T if φ ∈ SAT

2) Let M1,M2, . . . be a list of TMs with clocks so that Mi on input
of length n runs for i + ni steps. If it hasn’t finished then output
BLAH.

If F (or any function) is computable in poly time then there is
some i such that Mi computers F .

3) In the next slide we denote dlg lg ie by LL(i).

Assume P=NP

The program:

Input(φ)

For i = 1 to LL(n)

Run Mi on all fml of length ≤ LL(n).
Compute F (by brute force) on all fmls of length ≤ LL(n)
If Mi and F agree on all fmls of length ≤ LL(n) then

Compute x = Mi (φ)
If z = NO then output NO and halt.
If z = ~x ∧ φ(~x) = T then output ~x and halt.
If none of those happen then goto the next i .

If got this far then none of the i work. Oh well. Just
determine F (φ) by brute force.

Why the program is in P and works on next slide.

Why the Program Works and is in P

Assume F ∈ P. Let io be the least i such that Mi computes F .

There exists no such that for all n ≥ no , for all φ, |φ| = n, when
the program is run on φ the loop will stop during i = io and be
correct. Hence the program runs in poly-time.

For all φ, |φ| ≥ n, the program is correct.
Whenever the program outputs ~x , φ(~x) = T .
Hence when the program is incorrect, φ /∈ SAT.

Setting up The Program for FACTORING

1) If FACTORING in in P then there is a poly-time program for F :
Input:n
Output:

NO if n is prime
some m where m is a nontrivial factor of n if n is not prime

Note: F is not a function, its a multi-function.

2) Let M1,M2, . . . as before.

3) In the next slide we denote dlg lg lg ie by LLL(i).

Assume FACTORING in P

The program:

Input(n)

1. Test n ∈ PRIME using known primes algorithm. If YES then
output NO and halt.

For i = 1 to LLL(n)

Run Mi on all numbs of length ≤ LLL(n).
Compute F (by brute force) on all numbs of length ≤ LLL(n)
If Mi and F agree on all numbs of length ≤ LLL(n) then

Compute x = Mi (n)
If x divides n then output NO and halt.
If not then goto the next i .

If got this far then none of the i work. Oh well. Just
determine a factor of n by brute force.

Why the program is in P and works on next slide.

Assume P=NP so F ∈ P via Mi

Assume F ∈ P. Let io be the least i such that Mi computes F .

There exists no such that for all n ≥ no , for all φ, |φ| = n, when
the program is run on φ the loop will stop during i = io and be
correct. Hence the program runs in poly-time.

If n is prime the program is correct.
If n is not prime then the program only outputs an m that is a
nontrivial divisor or n.
So the program is never wrong!

Still wouldn’t use it.

