If P=NP Then There Is a Program For SAT

William Gasarch
What if P=NP but the proof is nonconstructive so that we don’t have an algorithm?

1. **Good News:** If P=NP then ∃ program you can write that will decide a finite variant of SAT in P-time.
2. **Good News:** You can write the program NOW!
3. **Good News?:** The finite number of fml the program is WRONG on are NOT in SAT.
4. **Bad News:** The program is completely impractical.
5. **Factoring:** Similar except that the program is always right.
6. **Credit:** The result on SAT is attributed to Levin.
7. **Credit:** The result on factoring I did this morning though I am sure its known.
1) If $P=NP$ then there is a poly-time program for F:
 \begin{align*}
 \text{Input:} & \phi \\
 \text{Output:} & \begin{cases}
 \text{NO} & \text{if } \phi \notin \text{SAT} \\
 \text{Lex Least } \vec{x} \text{ such that } \phi(\vec{x}) = T & \text{if } \phi \in \text{SAT}
 \end{cases}
 \end{align*}

2) Let M_1, M_2, \ldots be a list of TMs with clocks so that M_i on input of length n runs for $i + n^i$ steps. If it hasn’t finished then output BLAH.

 If F (or any function) is computable in poly time then there is some i such that M_i computes F.

3) In the next slide we denote $\lceil \lg \lg i \rceil$ by $LL(i)$.
Assume $P = NP$

The program:

Input(ϕ)
For $i = 1$ to $LL(n)$
 Run M_i on all fml of length $\leq LL(n)$.
 Compute F (by brute force) on all fmls of length $\leq LL(n)$
 If M_i and F agree on all fmls of length $\leq LL(n)$ then
 Compute $x = M_i(\phi)$
 If $z = NO$ then output NO and halt.
 If $z = \overline{x} \land \phi(\overline{x}) = T$ then output \overline{x} and halt.
 If none of those happen then goto the next i.

If got this far then none of the i work. Oh well. Just determine $F(\phi)$ by brute force.

Why the program is in P and works on next slide.
Why the Program Works and is in P

Assume $F \in P$. Let i_0 be the least i such that M_i computes F.

There exists n_o such that for all $n \geq n_o$, for all ϕ, $|\phi| = n$, when the program is run on ϕ the loop will stop during $i = i_0$ and be correct. Hence the program runs in poly-time.

For all ϕ, $|\phi| \geq n$, the program is correct.
Whenever the program outputs \vec{x}, $\phi(\vec{x}) = T$.
Hence when the program is incorrect, $\phi \not\in SAT$.
1) If FACTORING in in P then there is a poly-time program for F:
 Input: n
 Output:
 - NO if n is prime
 - some m where m is a nontrivial factor of n if n is not prime

Note: F is not a function, its a multi-function.

2) Let M_1, M_2, \ldots as before.

3) In the next slide we denote $\lceil \lg \lg \lg i \rceil$ by $LLL(i)$.
Assume FACTORING in P

The program:

Input(n)

1. Test $n \in PRIME$ using known primes algorithm. If YES then output NO and halt.

For $i = 1$ to $LLL(n)$

Run M_i on all nums of length $\leq LLL(n)$.

Compute F (by brute force) on all nums of length $\leq LLL(n)$

If M_i and F agree on all nums of length $\leq LLL(n)$ then

Compute $x = M_i(n)$

If x divides n then output NO and halt.

If not then goto the next i.

If got this far then none of the i work. Oh well. Just determine a factor of n by brute force.

Why the program is in P and works on next slide.
Assume $P = NP$ so $F \in P$ via M_i

Assume $F \in P$. Let i_o be the least i such that M_i computes F.

There exists n_o such that for all $n \geq n_o$, for all ϕ, $|\phi| = n$, when the program is run on ϕ the loop will stop during $i = i_o$ and be correct. Hence the program runs in poly-time.

If n is prime the program is correct.
If n is not prime then the program only outputs an m that is a nontrivial divisor or n.
So the program is never wrong!

Still wouldn’t use it.