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Levent Alpoge [1] proved, using van Der Waerden’s theorem, that the
primes are infinite.

Andrew Granville [2] gave another such proof. We present it and then:

1. Show that there is a proof using more Ramsey Theory and less number
theory.

2. Ask if one can get the result using even less number theory (and we
are okay with using more number theory).

1 VDW implies Primes Infinite

We first state van Der Waerden’s Theorem. A proof if it can be found in any
Ramsey theory textbook and several places online.

Notation 1.1 If n ∈ N then [n] is the set {1, . . . , n}.

Theorem 1.2 For all k, for all c, there exists W = W (k, c) such that for
all c-colorings COL : [W ]→ [c] there exists a, d such that

COL(a) = COL(a + d) = COL(a + 2d) = · · · = COL(a + (k − 1)d.

We use the notation W (k, c) throughout without commentary.
We second state a theorem due to Fermat.

Theorem 1.3 There can never be four squares in arithmetic progression.
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We note that this theorem is rather difficult to prove.

Theorem 1.4 There are an infinite number of primes.

Proof: Assume, by way of contradiction, that P = {p1, . . . , pm} is the set
of all primes. Let vp(x) be the largest r such that pr divides x.

We define a coloring COL of W (4, 2m) as follows:

COL(n) = (vp1(n) mod 2, . . . , vpm(n) mod 2).

The number of colors is 2m. By Theorem 1.2 there exists a, d such that

COL(a) = COL(a + d) = COL(a + 2d) = COL(a + 3d).

Let the color be (b1, . . . , bm) where bi ∈ {0, 1}. Then all the numbers in
{a, a + d, a + 2d, a + 3d} are of the form pc11 · · · p

ck
k where ci ≡ bi (mod 2).

Multiply all of the numbers by Π = p1−b1
1 · · · p1−bk

k . Now we have that all
elements of

{aΠ, (a + d)Π, (a + 2d)Π, (a + 3d)Π}

are squares. Hence

aΠ, (a + d)Π, (a + 2d)Π, (a + 3d)Π

is an arithmetic sequence of squares of length four. This contradicts Theo-
rem 1.3.

2 Can We Please Have Less Number Theory

and More Ramsey Theory?

The proof of Theorem 1.3 is difficult so we would rather use an easier theorem
from number theory. We only used VDW’s theorem with k = 4. Consider
the following theorem.

Theorem 2.1 There exists some k such that there can never be k squares
in arithmetic progression.
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In the proof of Theorem 1.4 we can use W (k, 2m) instead of W (4, 2m) to
get a proof that there are infinitely many primes from Theorem 2.1. Hence if
there is a proof of Theorem 2.1 that is easier than the proof of Theorem 1.3
then we will have a proof that the primes are infinite that uses slightly more
Ramsey Theory but less number theory. Of more importance is that this
would be an easier proof (at least to us).

We now state an even weaker theorem from Number theory that would
suffice.

Theorem 2.2 There exists some k, L such that there can never be k Lth
powers in arithmetic progression.

We leave it to the reader to prove that from Theorem 2.2 and Theorem 1.2
one can show the number of primes is infinite. Hence we now seek an easy
proof of Theorem 2.2.

3 Can We Please Have Even Less Number

Theory and Even More Ramsey Theory?

The following extension of VDW’s theorem is known:

Theorem 3.1 For all k, for all c, there exists W = W (k, c) such that for
all c-colorings COL : [W ]→ [c] there exists a, d such that

COL(a) = COL(a+d) = COL(a+2d) = · · · = COL(a+(k−1)d) = COL(d).

The following theorem is even weaker than Theorem 2.2

Theorem 3.2 There exists some k, L such that there can never be k Lth
powers in arithmetic progression with difference an Lth power.

We prove that there an infinite number of primes using Theorem 3.1 and
Theorem 3.2.

Theorem 3.3 The number of primes is infinite.
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Proof: Assume, by way of contradiction, that P = {p1, . . . , pm} is the set
of all primes. Let vp(x) be the largest r such that pr divides x.

We define a coloring COL of W (k, 2m) as follows:

COL(n) = (vp1(n) mod L, . . . , vpm(n) mod L).

The number of colors is Lm. By Theorem 1.2 there exists a, d such that

COL(a) = COL(a+d) = COL(a+2d) = · · · = COL(a+(k−1)d) = COL(d).

Let the color be (b1, . . . , bm) where bi ∈ {0, . . . , L − 1}. Then all the
numbers in {a, a + d, . . . , a + (k − 1)d, d} are of the form pc11 · · · p

ck
k where

ci ≡ bi (mod L). Multiply all of the numbers by Π = pL−b1
1 · · · pL−bk

k . Now
we have that all elements of

{aΠ, (a + d)Π, . . . , (a + (k − 1)d)Π, dΠ}

are Lth power. Also note that the arithmetic sequence

aΠ, (a + d)Π, . . . , (a + (k − 1)d)Π

consists of Lth powers, and the difference is dΠ, also an Lth power. This
contradicts Theorem 3.2.

So, is there an easy proof of Theorem 3.2? This depends on what you call
easy. However, the following theorem has a proof that we believe is easier
than that of Theorem 1.3.

Theorem 3.4 There cannot be tw 4th powers whose differences is a 4th
power.

Proof: If a, a + d, and d are fourth powers then let a = x4, a + d = z4,
d = y4. We then have x4 + y4 = z4 which contradicts Fermat’s last theorem
for n = 4.
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