
#CLIQ is #P-Complete
An Exposition by Lance Fortnow and William Gasarch

1 Introduction

Def 1.1

1. Let B ∈ NP. Let #B be the function that, on input x, outputs the
number of witnesses for x ∈ A.

2. Let B ∈ NP. #B is #P-complete if, for all A ∈ NP #A ≤p
T #B (you

can compute #A with a polynomial Oracle Turing machine that makes
queries to #B. From the proof of the Cook-Levin theorem one can see
that #CNFSAT (henceforth #SAT) is #P-complete.

3. A ≤p
m B by a parsimonious reduction (henceforth pars) if there is a

reduction that preserves the number of witnesses. Clearly if A ≤p
m B

by a pars reduction then #A ≤p
T #B. We don’t know any examples of

NP-complete problems whose counting versions are not #P-complete
under parsimonious reductions.

4. CLIQ is the set {(G, k) : Graph G has a clique of size k}

The following are true.

1. Valiant [2, 3] defined #P and #P-complete to show that computing
the permanent of a matrix is hard. He did indeed show that PERM
is #P-complete (PERM can be phrased as an NP-counting problem).
He also showed this for 0-1 matrices.

2. Valiant also showed several other problems #P-complete.

3. Toda [1] showed that every set in the Poly Hierarchy is poly-Turing
reducible to #SAT.

#CLIQ is #P-complete. The standard proof of the Cook-Levin theorem
gives a parsimonious reduction the number of witnesses of an NP algorithms
to CNF-SAT. The first proof we give gives a parsimonious reduction from
CNF-SAT to CLIQ. We believe this proof or something similar has long been
known but we have not found it in the literature or on-line. The second proof
is probably less well known and is not parsimonious.

1



2 Easy Proof that #CLIQ is #P-complete

Theorem 2.1

1. There is a pars reduction from #SAT to #3SAT.

2. There is a pars reduction from #3SAT to #CLIQ.

Proof:
1) A pars reduction from #SAT to #3SAT. The usual reductions are not
parsimonious. We make them parsimonius by either forcing each additional
variable to false, or to be forced from the assignment to the original variables.

1. Input φ = C1 ∧ · · · ∧ Ck where each Ci is an OR of literals.

2. Introduce three new variables x, y, z and the clauses

(x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z)∧
(¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z)

Hence in any satisfying assignment x, y, z are all set to false.

3. For all Ci that are 1-clauses, Ci = w, replace it with w ∨ x ∨ y.

4. For all Ci that are 2-clauses, Ci = w1 ∨w2, replace it with w1 ∨w2 ∨ x.

5. For all Ci that are 3-clauses, no change needed.

6. We now talk about Ci that have ≥ 4 literals. We do an example of
what to do with a 5-clause. Note that all the L′s are literals, so they
can be variables or their negations.

Given L1 ∨ L2 ∨ L3 ∨ L4 ∨ L5

Introduce a new variables W . Consider

(L1∨L2∨W )∧ (¬L1∨L2∨W )∧ (L1∨¬L2∨W )∧ (¬L1∨¬L2∨¬W )∧

(¬W ∨ L3 ∨ L4 ∨ L5)

If W = F then we get all solutions where (L1, L2) = (T, T ).

2



IfW = T then we get all solutions where (L1, L2) ∈ {(T, F ), (F, T ), (F, F )}.
Hence the number of satisfying assignments is the same. But we still
have a 4-clause.

Do the same procedure on the 4-clause that we did on the 5-clause.

A pars reduction from #3SAT to #CLIQ.

1. Input φ = C1 ∧ · · · ∧ Ck where each Ci is a 3-clause. We assume that
every variable occurs in at least one clause in φ.

2. We create a graph G with 7k vertices as follows: For each clause we
have 7 vertices. Label them with the 7 ways to set the 3 vars to make
the clause satisfiable. For example, for the clause x ∨ y ∨ ¬z, we have
7 vertices

• (x=T,y=T,z=T)

• (x=T,y=T,z=F)

• (x=T,y=F,z=T)

• (x=T,y=F,z=F)

• (x=F,y=T,z=T)

• (x=F,y=T,z=F)

• (x=F,y=F,z=F)

3. Only put an edge between vertices that are consistent with each other,
i.e., don’t set the same variable different ways. Note there will be no
edges between two vertices assigned to the same clause.

We leave the reader to show that the number of k-cliques in G is the same
as the number of satisfying assignment to φ.

3 A Hard Non-parsimonious Proof that #CLIQ

is #P-Complete

1. Valiant [2] showed that PERM (the permanent of a matrix) is #P-
complete, even when restricted to 0-1 matrices.

3



2. View an n × n 0-1 matrix as a bipartite graph G with n vertices on
both sides. The PERM is the number of perfect matchings of G. Let
PM be the problem of, given a bipartite graph with n vertices on each
side, does it have a perfect match. Hence #PM is #P-complete. This
is interesting since PM itself is in P .

3. (Valiant proved this) Let TH-POS-2SAT be the set of all (φ, k) such
that φ is a 2CNF Boolean formula with all literals positive that has a
satisfying assignment with ≥ k of the variables set to F.

PM ≤ TH-POS-2SAT with a pars reduction:

(a) Input G, a bipartite graph with k vertices on each side.

(b) Form the following 2CNF formula φ: for each edge (x, y) in G
we have the variable vxy. Two variables are in a clause iff the
associated edges are incident.

(c) Output (φ, k).

We have a bijection from the perfect matchings of G to the satisfying
assignments that have ≥ k variables set to F.

If e1, . . . , ek is a perfect matching then the variables e1, . . . , ek can all
be set to F (and set the rest to T) without any clause being false.

Hence #TH-POS-2SAT is #P-complete.

4. There is a pars reduction TH-POS-2SAT ≤ CLIQ.

(a) Input (φ, k), a 2CNF formula with no negated vars.

(b) Form the following graph G for each vertex x we have a node x.
Two variables are in a clause iff they are NOT connected by an
edge.

(c) Output (G, k).

We have a bijection from the satisfying assignments of φ that have k
variables set to F to the cliques with k vertices. If x1, . . . , xk are the
variables that are set to F then make those the vertices. They form a
clique since no two of them can be in a clause, so no two can be an
edge.

Hence #CLIQ is #P-complete.

4



This is a much harder proof that #CLIQ is #P-complete than the one
in Theorem 2.1 since this proof uses that PERM is #P-complete, which is a
difficult result.

References

[1] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
of Computing, 20(5):865–877, 1991.
https://doi.org/10.1137/0220053.

[2] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.
http://dx.doi.org/10.1016/0304-3975(79)90044-6.

[3] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal of Computing, 8(3):410–421, 1979.
http://dx.doi.org/10.1137/0208032.

5


