A Math Problem and its Solution

Problem

Find the coefficient of x^{100} in the Taylor expansion of

$$
\frac{1}{x^{41}-x^{40}-x^{36}+x^{35}-x^{31}+x^{30}+x^{26}-x^{25}-x^{16}+x^{15}+x^{11}-x^{10}+x^{6}-x^{5}-x+1} .
$$

The Solution Note that the denominator factor into $(x-1)\left(x^{5}-1\right)\left(x^{10}-1\right)\left(x^{25}-1\right)$. We rewrite the problem as finding the coefficient of x^{100} in

$$
\begin{gathered}
\frac{1}{1-x} \frac{1}{1-x^{5}} \frac{1}{1-x^{10}} \frac{1}{1-x^{25}} \\
=\left(1+x+x^{2}+\cdots\right)\left(1+x^{5}+x^{10}+\cdots\right)\left(1+x^{10}+x 20+\cdots\right)\left(1+x^{25}+x^{50}+\cdots\right) .
\end{gathered}
$$

The coefficient of x^{n} is the number of ways to make change for n cents using pennies, nickels, dimes, and quarters. So our problem is how many ways can you make change for a dollar.

Let a_{n} be the number of ways to make change with pennies. So

$$
(\forall n \geq 0)\left[a_{n}=1\right] .
$$

Let b_{n} be the number of ways to make change with pennies and nickel. So

$$
(\forall n \geq 5)\left[b_{n}=b_{n-5}+a_{n}\right]
$$

It is easy to show that

$$
(\forall n \geq 0)(\forall i \in\{0,1,2,3,4\})\left[b_{5 n+i}=n+1\right] .
$$

Let c_{n} be the number of ways to make change with pennies, nickels, and dimes. So

$$
(\forall n \geq 10)\left[c_{n}=c_{n-10}+b_{n}\right]
$$

Let d_{n} be the number of ways to make change with pennies, nickels, dimes, and quarters. So

$$
(\forall n \geq 10)\left[d_{n}=d_{n-25}+c_{n}\right]
$$

We need to compute d_{100}. We use the exact formula for b_{n} and the recurrences for c_{n} and d_{n}.

$$
\begin{aligned}
& d_{100}=c_{100}+c_{75}+c_{50}+c_{25}+c_{0} \\
& c_{0}=1 \\
& c_{25}=b_{25}+b_{15}+b_{5}=6+4+2=12 \\
& c_{50}=b_{50}+b_{40}+b_{30}+b_{20}+b_{10}+b_{0}=11+9+7+5+3+1=36 \\
& c_{75}=b_{75}+b_{65}+b_{55}+b_{45}+b_{35}+c_{25}=16+14+12+10+8+12=72 \\
& c_{100}=b_{100}+b_{90}+b_{80}+b_{70}+b_{60}+c_{50}=21+19+17+15+13+36=121
\end{aligned}
$$

Hence
$d_{100}=1+12+36+72+121=242$.
Hence the coefficient of x^{100} is 242 .

