UNIT-DISTANCE GRAPHS IN RATIONAL \(n \)-SPACES

Kiran B. CHILAKAMARRI

Department of Mathematics, The Ohio State University, Columbus, OH 43210, U.S.A.

Received 20 May 1986
Revised 5 February 1987

Let \(U_n \) be the infinite graph with \(n \)-dimensional rational space \(\mathbb{Q}^n \) as vertex set and two vertices joined by an edge if and only if the distance between them is exactly 1. The connectedness and clique numbers of the graphs \(U_n \) are discussed.

1. Introduction and definitions

Let \(R^n \) and \(\mathbb{Q}^n \) denote real and rational \(n \)-space, equipped with the usual Euclidean metric. Let \(G_n \) denote the infinite graph whose vertices are the points of \(R^n \), two vertices adjacent if and only if the distance between them is exactly 1. It is easy to see that \(G_n \) is connected for \(n \geq 2 \) and the maximum number of points in \(R^n \) that are pairwise unit distance apart (the clique number of \(G_n \)) is \(n + 1 \) for \(n \geq 1 \). However, the chromatic number of \(G_n \) is so far unknown for \(n \geq 2 \) [1].

Let \(U_n \) be the subgraph of \(G_n \) induced by those vertices that are in \(\mathbb{Q}^n \). In Section 2 we shall prove that \(U_n \) is connected if and only if \(n \geq 5 \). In Section 3 we shall determine the clique number \(\omega(n) \) of \(U_n \). For even \(n \), \(\omega(n) \) is \(n + 1 \) or \(n \) according as \(n + 1 \) is or is not a perfect square. For odd \(n \), if the diophantine equation \(nx^2 - 2(n - 1)y^2 = z^2 \) has an integer solution \((x, y, z)\) with \(x \neq 0 \), then \(\omega(n) = n + 1 \) or \(n \) according as \(\frac{1}{2}(n + 1) \) is or is not a perfect square; otherwise, \(\omega(n) = n - 1 \).

2. The connectedness of \(U_n \)

In this section we shall first prove that \(U_1, U_2, U_3, \) and \(U_4 \) are all disconnected and prove that \(U_n \) is connected for \(n \geq 5 \).

Lemma 1. There is no path in \(U_4 \) connecting the origin \((0, 0, 0, 0)\) to \((\frac{1}{4}, 0, 0, 0)\).

Proof. Suppose there is. Then, equivalently, there are finitely many points on the unit sphere in \(\mathbb{Q}^4 \) whose sum is \((\frac{1}{4}, 0, 0, 0)\). Let \((a_1/b, a_2/b, a_3/b, a_4/b)\) be such a point, where \(a_1, a_2, a_3, a_4, \) and \(b \) have no common factor and

\[
a_1^2 + a_2^2 + a_3^2 + a_4^2 = b^2. \tag{1}
\]
If b is divisible by 4, then at least one of a_1, a_2, a_3, a_4 is odd, and so the left-hand side of (1) is not divisible by 8 whereas the right-hand side is. (Recall that the only squares modulo 8 are 0, 1, and 4.) Thus b is either odd or twice an odd integer. But the sum of a finite number of fractions with denominators of this form cannot be equal to $\frac{1}{4}$. This completes the proof of the lemma. \qed

Theorem 2. The graphs $U_1, U_2, U_3,$ and U_4 are all disconnected.

Proof. This follows immediately from Lemma 1, since there are obvious subgraphs of U_4 that contain the points $(0, 0, 0, 0)$ and $(\frac{1}{4}, 0, 0, 0)$ and are isomorphic to U_1, U_2, and U_3, respectively. \qed

Theorem 3. The graph U_n is connected for $n \geq 5$.

Proof. First note that if there exist two paths in U_n, one connecting 0 to x and the other connecting 0 to y, then there exists a path from 0 to $x + y$ in U_n. With this observation, it suffices to show that there is a path from 0 to $(0, 0, \ldots, 0, 1/N, 0, \ldots, 0)$ in U_n for every non-zero integer N with $1/N$ in the ith coordinate for $i = 1, 2, \ldots, n$. Consider the integer $4N^2 - 1$. Since it is positive it can be written as a sum of four squares by Lagrange’s Four Square Theorem. Hence, $4N^2 - 1 = a^2 + b^2 + c^2 + d^2$ for some integers $a, b, c, \text{ and } d$, or, equivalently,

$$1 = \left(\frac{1}{2N}\right)^2 + \left(\frac{a}{2N}\right)^2 + \left(\frac{b}{2N}\right)^2 + \left(\frac{c}{2N}\right)^2 + \left(\frac{d}{2N}\right)^2. \quad (2)$$

So, there are edges in U_n joining 0 and

$$\left(\frac{1}{2N}, \pm \frac{a}{2N}, \pm \frac{b}{2N}, \pm \frac{c}{2N}, \pm \frac{d}{2N}, 0, 0, \ldots, 0\right).$$

This shows that there is a path of length 2 in U_n connecting 0 to $(1/N, 0, 0, \ldots, 0)$. By repeating the above with $1/2N$ in the ith coordinate, the desired path is obtained. This completes the proof of the theorem. \qed

3. The clique number of U_n

A set of points will be called unidistant if they are pairwise unit distance apart. Let $\omega(n)$ denote the maximum number of unidistant points in Q^n (the clique number of U_n). We may remark that any unidistant set can be translated so that the translated unidistant set contains 0. In this section, we first find bounds for $\omega(n)$ and then evaluate $\omega(n)$.

Lemma 4. $\omega(n) \leq n + 1$.
Unit-distance graphs in rational n-spaces

Proof. Let \(\{0, y_1, y_2, \ldots, y_r\} \) be a unidistant set in \(\mathbb{Q}^n \). Let \(A \) be the \(r \times n \) matrix whose rows are \(y_1, y_2, \ldots, y_r \). Now the \(r \times r \) matrix \(AA^T \) has 1's on the principal diagonal and \(\frac{1}{2} \) everywhere else. \(AA^T \) is a non-singular matrix and so,

\[r = \text{rank}(AA^T) = \text{rank}(A) \leq n. \]

From this it follows immediately that \(\omega(n) \leq n + 1 \). This completes the proof of the lemma. \(\Box \)

Lemma 5. If \(n \geq 4 \), then \(\omega(n) = n \) if \(n \) is even and \(\omega(n) = n + 1 \) if \(n \) is odd.

Proof. If \(n \) is even, define a set \(S_n \) of \(n \) unidistant points as follows:

\[
\begin{align*}
x_1 &= 0 \\
x_2 &= (1, 0, 0, \ldots, 0) \\
x_3 &= (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \ldots, 0) \\
x_4 &= (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, 0, \ldots, 0) \\
x_5 &= (\frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, 0, \ldots, 0) \\
x_6 &= (\frac{1}{2}, \frac{1}{2}, 0, 0, -\frac{1}{2}, 0, \ldots, 0) \\
&& \vdots \\
x_{n-1} &= (\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0, \frac{1}{2}, \frac{1}{2}) \\
x_n &= (\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0, \frac{1}{2}, -\frac{1}{2})
\end{align*}
\]

If \(n \) is odd, define a set \(T_n \) of \(n - 1 \) unidistant points by adding an extra coordinate zero to the end of each vector in \(S_{n-1} \). \(\Box \)

Theorem 6. \(\omega(n) = n + 1 \) if and only if a set of \(n \) unidistant points exist in \(\mathbb{Q}^n \) and \((n + 1)/2^n \) is a rational square.

Proof. If \(\omega(n) = n + 1 \), then with no loss of generality let \(\{0, x_1, \ldots, x_n\} \) be a set of the \(n + 1 \) unidistant points in \(\mathbb{Q}^n \). Let \(A \) be the \(n \times n \) matrix having \(x_1, x_2, \ldots, x_n \) as its rows. It is clear that \(\det(A) \) (the determinant of \(A \)) is a rational number. No < \(\det(4A^T) = (n + 1)/2^n = \) square of \(\det(A) \), thus showing that \((n + 1)/2^n \) is a rational square.

Suppose \((n + 1)/2^n \) is a rational square and \(\{0, x_1, \ldots, x_{n-1}\} \) is a unidistant set of \(n \) points. We will construct a point \(x_n \) so that \(\{0, x_1, \ldots, x_n\} \) is a unidistant set in \(\mathbb{Q}^n \). Consider the \((n - 1) \times n \) matrix \(B \) having \(x_1, \ldots, x_{n-1} \) as its rows. Let \(B_i \) be the \((n - 1) \times (n - 1) \) matrix obtained from \(B \) by deleting its \(i \)th column, and let \(a_i = (-1)^{i+1} \det(B_i) \), for \(i = 1, 2, \ldots, n \). Defining a vector \(x = (a_1, a_2, \ldots, a_n) \), we observe that it has the following properties;

1. \(x \) is in \(\mathbb{Q}^n \).
2. \(x \) is orthogonal to \(x_1, x_2, \ldots, x_{n-1} \) (follows from construction),
3. \(\|x\|^2 = \det(BB^T) = n/2^{n-1} \) (easily verified and also a consequence of the Cauchy–Binet Theorem).
Define a vector \(x_n = kx + c \), where
\[
c = \frac{1}{n} (x_1 + x_2 + \cdots + x_{n-1})
\]
and
\[
k = \frac{2^{n-1}}{n} \sqrt{\frac{n + 1}{2^n}}.
\]
The vector \(x_n \) is in \(Q^n \) since \(k \) is a rational number. From properties (2) and (3) above, it follows that
\[
\|x_n\|^2 = k^2 \|x\|^2 + 2kx \cdot c + \|c\|^2
\]
\[
= \frac{2^{n-2} n + 1}{n^2} \cdot \frac{n}{2^n} + \frac{n - 1}{n^2} \left(n - 1 + \frac{(n-1)(n-2)}{2} \right)
\]
\[
= \frac{n + 1}{2n} + \frac{n - 1}{2n} = 1
\]
and
\[
\|x_n - x_i\|^2 = \|x_n\|^2 - 2x_n \cdot x_i + \|x_i\|^2
\]
\[
= 1 - \frac{2}{n} \left(1 + \frac{n-2}{2} \right) + 1 = 1, \quad \text{for } i = 1, 2, \ldots, n - 1. \quad (4)
\]
This completes the proof. \(\square \)

Theorem 7. If \(n \) is even, then \(\omega(n) = n + 1 \) if \(n + 1 \) is a perfect square and \(\omega(n) = n \) otherwise.

Proof. If \(n \geq 4 \), this follows immediately from Lemma 5 and Theorem 6. If \(n = 2 \), the result is a simple exercise. In fact, Woodall [4] shows that \(U_2 \) is two-colorable (bipartite). \(\square \)

In what follows, we shall need the following theorem:

Theorem (Hall and Ryser [2]). Let \(A \) be a non-singular \(n \times n \) matrix with entries from a field of characteristic \(\neq 2 \), and suppose that \(AA^T = D_1 \oplus D_2 \), the direct sum of two square matrices \(D_1 \) and \(D_2 \) of orders \(r \) and \(s \) respectively (\(r + s = n \)). Let \(M \) be an arbitrary \(r \times n \) matrix such that \(MM^T = D_1 \). Then there exists an \(n \times n \) matrix \(Z \) having \(M \) as its first \(r \) rows such that \(ZZ^T = D_1 \oplus D_2 \).

Lemma 8. Let \(U \) and \(V \) be two unidistant sets of \(n - 1 \) points in \(Q^n \). Then there is a rational orthogonal transformation (preserving distances and inner products) that maps \(U \) onto \(V \). In particular, there is a point \(u \) in \(Q^n \) that is unidistant from all points in \(U \) if and only if there is a point \(v \) in \(Q^n \) that is unidistant from all points in \(V \).
Proof. There is no loss of generality in supposing that \emptyset is in both U and V, so that we can write

$$U = \{\emptyset, u_1, \ldots, u_{n-2}\} \quad \text{and} \quad V = \{\emptyset, v_1, \ldots, v_{n-2}\}.$$

Let u_{n-1} and u_n be independent vectors in Q^n that are orthogonal to all the vectors in U. Let A be the $n \times n$ matrix with rows u_1, u_2, \ldots, u_n and let M be the $(n-2) \times n$ matrix with rows $v_1, v_2, \ldots, v_{n-2}$. Then A is non-singular, $AA^T = D_1 \oplus D_2$ and $MM^T = D_1$, where D_1 is a square matrix of order $n-2$ with 1's on the principal diagonal and $\frac{1}{2}$ everywhere else, and D_2 is a non-singular 2×2 matrix. By Hall and Ryser's theorem, there exists an $n \times n$ matrix Z having M as its first $n-2$ rows such that $ZZ^T = D_1 \oplus D_2$. Let $L = Z^{-1}A$. Then L is a rational matrix such that $v_iL = u_i$, for $i = 1, 2, \ldots, n-2$. Moreover, L is an orthogonal matrix, because $(Z^T)^{-1}Z^{-1}AA^T = I$ and so $LL^T = Z^{-1}AA^T(Z^{-1})^T = I$. This completes the proof of Lemma 8. \[\square\]

Theorem 9. Let n be an odd integer ≥ 5. If the diophantine equation

$$nx^2 - 2(n-1)y^2 = z^2 \quad (5)$$

has an integer solution (x, y, z) with $x \neq 0$, then $\omega(n) = n+1$ or n according as $\frac{1}{2}(n+1)$ is or is not a perfect square; otherwise $\omega(n) = n - 1$.

Proof. In view of Theorem 6, it suffices to prove that $\omega(n) \geq n$ if and only if (5) has an integer solution with $x \neq 0$. By Lemma 8, $\omega(n) \geq n$ if and only if there is a point x in Q^n that is unidistant from all the $n-1$ points in the set T_n of Lemma 5. Let

$$x = (t_1, s_1, t_2, s_2, \ldots, t_m, s_m, r)$$

be such a point, where $m = \frac{1}{2}(n-1)$. It follows immediately that $t_1 = \frac{1}{2}$, $s_2 = s_3 = \cdots = s_m = 0$, $t_2 = t_3 = \cdots = t_m = \frac{1}{2} - s_1$ and $s_1^2 + (m-1)(\frac{1}{2} - s_1)^2 + r^2 = \frac{3}{4}$. Solving for s_1 in terms of r,

$$s_1 = \frac{m-1 \pm \sqrt{n-4mr^2}}{2m}. \quad (6)$$

Thus there exists a point x in Q^n as required if and only if there exists a rational number $r = y/x$ such that $n - 4mr^2$ is a rational square, say $(z/x)^2$; that is, if and only if eq. (5) has an integer solution with $x \neq 0$. This completes the proof of Theorem 9. \[\square\]

The above theorem is also true for $n = 1$ and $n = 3$. For $n = 3$, the result is a simple exercise. The chromatic number of U_3 is 2. Robertson [3] has shown that the chromatic number of U_4 is 4. These results will be reported in a separate paper dealing mainly with the coloring of graphs U_n.

Unit-distance graphs in rational n-spaces 217
Acknowledgments

The author wishes to thank Professor Neil Robertson for his guidance, and the referee for his valuable suggestions.

References