$$
W(3, r) \geq e^{A(\ln r)^{2}}
$$

Expostion by William Gasarch
On my blog I stated that one could easily get $W(3, r) \geq r^{3 / 2}$. A commenter, who is unfortuantely anonymous, sketched a proof that $W(3, r) \geq$ $e^{A(\ln r)^{2}}$ for some constant A. This note is an exposition of the proof. It is not due to me and I doubt it was due to the commenter; I think it is well known.

Behrend [1] showed the following:
Lemma 0.1 for all n, there is a 3 -free subset of $[n]$ of size $\geq n e^{-c \sqrt{\log n}}$ where c is some positive constant.

Chandra-Furst-Lipton [2] showed the following with an easy probabilistic argument.

Lemma 0.2 Let $A \subseteq[n]$. There exists r translations of A that cover $[n]$ where $r=O\left(\frac{n \log n}{|A|}\right)$.

The following is easily derived Lemma 0.2 :
Lemma 0.3 Let $n \in \mathbb{N}$. Let A be a 3-free subset of $[n]$. For all n there exists a 3-free r-coloring of $[n]$ where $r=O\left(\frac{n \log n}{|A|}\right)$.

Combining Lemma 0.1 with Lemma 0.3 we obtain the following:
Theorem 0.4 For all $n \in \mathbf{N}$ there is a 3-free coloring of $[n]$ that uses r colors where $\left.r=O\left((\ln n)\left(e^{c \sqrt{\ln n}}\right)\right)\right)$

Proof: Apply Lemma 0.3 to the set A from Lemma 0.3. Note that
$r=O\left(\frac{n \log n}{n e^{-c \sqrt{\log n}}}\right)=O\left(\frac{\log n}{e^{-c \sqrt{\log n}}}\right)=O\left((\log n)\left(e^{c \sqrt{\log n}}\right)\right)=O\left((\ln n)\left(e^{c \sqrt{1 n}}\right)\right)$

So we have that, for all n, there is a 3 -free coloring with r colors where r is as above. We want to invert this.

Fix r. Let $n=e^{C(\ln r)^{2}}$ where C is a constant to be named later. Can $[n]$ be colored with r colors? Need

$$
r \geq B(\ln n)\left(e^{c \sqrt{\ln n}}\right)
$$

Note that

$$
\begin{gathered}
\ln n=C(\ln r)^{2} . \\
c \sqrt{\ln n}=c \sqrt{C} \ln r=\ln r^{c \sqrt{C}}, \text { so } e^{c \sqrt{\ln n}}=r^{c \sqrt{C}}
\end{gathered}
$$

So need

$$
r \geq B C(\ln r)^{2} r^{c \sqrt{C}}
$$

Take $C<\frac{1}{c^{2}}$ to achieve his.

References

[1] F. Behrend. On set of integers which contain no three in arithmetic progression. Proc. of the National Academy of Science (USA), 23:331-332, 1946. http://www.pnas.org/content/32/12/331.full. pdfthtml?sid=aeac9fed-6205-4b25-9f16-7a34a17e6042.
[2] A. Chandra, M. Furst, and R. Lipton. Multiparty protocols. In Proceedings of the Fifteenth Annual ACM Symposium on the Theory of Computing, Boston MA, pages 94-99, 1983. http://portal.acm.org/ citation.cfm?id=808737.

