Homework 3, MORALLY Due Feb 18

WARNING: THIS HW IS TWO PAGES LONG!!!!!!!!!!!!!!!!!

1. (40 points)
(a) (20 points) We are working in binary so all numbers are 0 's and 1 's. When we input 2 bits to a circuit we think of it as a NUMBER in base 2 .
$00=0$
$01=1$
$10=2$
$11=3$
The output will be 3 bits, intepreted as a number in base 2 .
$000=0, \ldots, 111=7$
Write a truth table with 2 inputs and 3 outputs for the following function:
$f(x y)=(x y)^{2} \quad(\bmod 8)$.
So for example
$f(11)$ is computed by $11=3,3^{2}=9,9(\bmod 8)=1$, so the output is 001 .
(b) (20 points) Write a circuit for f using AND, OR, and NOT using the method shown in class (do not simplify- that would make it harder for the TA's to grade!)

SOLUTION TO PROBLEM 1 OMITTED GO TO NEXT PAGE!!!!!!!!!!!!!!!!!!!!

2. (60 points) In this problem the inputs are considered bits that you add. So if the input is $(1,0,1)$ it is NOT 101 in base 2 which is 5 . Its just three bits, separate.
The Depth of a circuit is the max number of gates from input to output.
The Size of a circuit is the total number of gates.
ALSO- we allow for input the variables AND their negations.
In this problem we will look at different circuits for:

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n} \quad(\bmod 2)
$$

We allow AND, OR and NOT gates usual; however, the AND and OR gates can take MANY inputs (as many as you want).
You can assume that n is a power of two if it makes the math easier.
(a) (30 points) Show that, for all n, there is a circuit for f_{n} with depth 2. What is the circuit's size?
(b) (30 points) Show that, for all n, there is a circuit for f_{n} with size $O(n)$ (less than some constant times n). What is the constant? What is the depth of the circuit? (HINT: First get a circuit for $f_{2}\left(x_{1}, x_{2}\right)$. View this as a gate you can use. Use that

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=f_{n / 2}\left(f_{2}\left(x_{1}, x_{2}\right), f\left(x_{3}, x_{4}\right), \ldots, f\left(x_{n-1}, x_{n}\right)\right)
$$

(c) (0 points but think about) In part 1 you got a CONSTANT DEPTH but LARGE SIZE circuit. In part 2 you got a SMALL SIZE but LOG DEPTH circuit. Is there a circuit for f_{n} which is constant depth and small size?

SOLUTION TO PROBLEM 2

Omitted. Will go over in class.

