Homework 5, MORALLY Due March 25

WARNING: THIS HW IS TWO PAGES LONG!!!!!!!!!!!!!!!!!

1. (20 points)
(a) (0 points) What is $\int_{1}^{n} x^{2} d x$?
(b) (2 points) Use the answer to part 1 to conjecture the FORM of the formula (with some of the coefficients not know) for

$$
\sum_{i=1}^{n} i^{2}
$$

(To make your life easier you can also conjecture what the first coefficient is based on the interval.)
(c) (9 points) (Use part b) By plugging in $n=0, n=1$, and perhaps more find a very good guess for the formula for $\sum_{i=1}^{n} i^{2}$. Show your work of course. (It should be the real formula.)
(d) (9 points) (Use part b) Derive the formula by constructive induction.
2. (20 points) Recall our usual induction scheme:

From

- $P(0)$
- $(\forall n \geq 0, n \in \mathbf{N})[P(n) \rightarrow P(n+1)]$
we get $(\forall n \in \mathrm{~N})[P(n)]$.
This problem is about how to modify this scheme.
(a) (7 points) Give a scheme that will show

$$
(\forall n \equiv 0 \quad(\bmod 4), n \in \mathbf{N})[P(n)] .
$$

(b) (7 points) Give a scheme that will show

$$
(\forall n \equiv 0,1 \quad(\bmod 4), n \in \mathrm{~N})[P(n)] .
$$

(c) (6 points) Give a scheme that will show

$$
(\forall n \in \mathbf{Z})[P(n)] .
$$

GOTO NEXT PAGE
3. (20 points) Assume that there are constants A, B, C, D such that

$$
(\forall n \geq 0, n \in \mathrm{~N})\left[\sum_{i=1}^{n} i \times 2^{i}=A n 2^{n}+B 2^{n}+C n+D\right]
$$

(a) (10 points) Find A, B, C, D by plugging in $n=0,1,2,3$ (or less if you don't need all of those) into the equation.
(b) (10 points) Find A, B, C, D by constructive induction.
(c) (0 points- don't hand in) What are the PROS and CONS of each technique?
(d) (0 points- don't hand in) How could you have guessed the form of the summation above? One way is with integrals. Can you think of another way?
4. (20 points) Let $T(n)$ be defined by

$$
\begin{gathered}
T(1)=10 \\
T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lfloor\frac{n}{3}\right\rfloor\right)+17 n
\end{gathered}
$$

By constructive induction find value $c \in \mathrm{~N}$ such that $(\forall n)[T(n) \leq c n$. Try to make c as small as possible (and its in N so this is possible).
5. (20 points) In the country of Fredonia they only use 10-cent coins and 11-cent coins. Note that the people cannot have 9 cents on them, they can have 10, they can have 11, but they can't have 12 .
(a) (0 points and don't hand anything in) Write a program that will, for $n=1$ to 1000 , determine which numbers of cents good people of Fredonia can have.
(b) (5 points) Make a conjecture of the form:

- $n_{0}-1$ CANNOT be written in the form $10 x+11 y$ with $x, y \in$ N.
- $\left(\forall n \geq n_{0}\right)(\exists x, y \in \mathrm{~N})[n=10 x+11 y]$.
(So you need to find n_{0}.)
(c) (15 points) Prove your conjecture by induction.

