Homework 7

Morally due FRI Apr 5, 5:00PM. DEAD CAT Monday Apr 8 5:00 (NOTE- Change of when its due is so that we can go over it in rec BEFORE the exam.)

THE HW IS TWO PAGES LONG!!!!!!!!!!!!

1. (20 points)

(a) (10 points) WG, Jtwitty, and K are taking the class on a field trip to the Combinatorics Museum! There are 32 students in the class WG will drive 18 of them.

Jtwitty will drive 7 of them.

K will drive 7 of them.

How many ways can the students choose which cars they want to be in?

(b) (15 points) Generalize the problem as follows. A₁,..., A_n are taking the class on a field trip! There are S students in the class.
A will drive a of them

 A_1 will drive a_1 of them.

 A_n will drive a_n of them.

(Note that $a_1 + \cdots + a_n = S$.)

How many ways can the students choose which cars they want to be in?

2. (25 points) Use a combinatorial argument (NOT algebraic, NOT by induction) to show that if S = a + b + c then

$$\frac{S!}{a!b!c!} = \frac{(S-1)!}{(a-1)!b!c!} + \frac{(S-1)!}{a!(b-1)!c!} + \frac{(S-1)!}{a!b!(c-1)!}$$

GOTO NEXT PAGE

3. (25 points) Fill in the blanks in the following statement. Describe your reasoning. BLANK will be a function of k, n.

If $A \subseteq \{1, \ldots, n\}$ and |A| = k then at least BLANK subsets of A have the same SUM.

4. (25 points) Show that no matter how you 3-color the 4×19 grid there will be a monochromatic rectangle.