Homework 8, Morally due Tue Apr 16, 3:30PM

THIS HW IS TWO PAGES!!!!!!!!!!!

Throughout this HW:

- Let $f(m, s)$ be the muffin function (from the talk Bill gave on Muffins).
- To prove that, say $f(11,5)=\frac{13}{30}$ you would need to BOTH give a PROCEDURE that allocates 11 muffins to 5 people with smallest piece $\frac{13}{30}$ AND prove that there is no BETTER procedure.
- You CANNOT use the Floor-Ceiling Theorem, though you can use the same kind of reasoning in a particular case.

1. (50 points) Prove $f(9,5)=\frac{2}{5}$.

SOLUTION TO PROBLEM ONE

Procedure that shows $f(9,5) \geq \frac{2}{5}$:
(a) Divide 9 muffins $\left\{\frac{2}{5}, \frac{3}{5}\right\}$.
(b) Give 3 students $\left\{\frac{2}{5}, \frac{2}{5}, \frac{2}{5}, \frac{3}{5}\right\}$.
(c) Give 2 students $\left\{\frac{3}{5}, \frac{3}{5}, \frac{3}{5}\right\}$.

We can't do better: Assume there is a protocol with smallest piece $>\frac{2}{5}$. If some muffin is cut into ≥ 3 pieces then some piece is $\leq \frac{1}{3}$. Hence we can assume every piece is cut into ≤ 2 pieces.
If some muffin is uncut then one could just cut that muffin $\frac{1}{2}-\frac{1}{2}$ give the recipient both halfs.

Hence we have that every muffin is cut into 2 pieces. So there are 18 pieces.
Since there are 5 students, some student gets $\geq\left\lceil\frac{18}{5}\right\rceil=4$ pieces. that student has a piece of size $\leq \frac{9}{5} \times \frac{1}{4}=\frac{9}{20}$. We want $\leq \frac{2}{5}=\frac{8}{20}$. DARN.
Since there are 5 students, some student gets $\leq\left\lfloor\frac{18}{5}\right\rfloor=3$ pieces. that student ha a piece of size $\geq \frac{9}{5} \times \frac{1}{3}=\frac{3}{5}$. Look at the muffin that piece came from. The other prat of that muffin is of size $\leq 1-\frac{3}{5}=\frac{2}{5}$.

GO TO THE NEXT PAGE
2. (50 points) Prove $f(7,6)=\frac{1}{3}$.

SOLUTION TO PROBLEM TWO

a) $f(7,6) \geq \frac{1}{3}$
(a) Divide 3 muffins $\left(\frac{1}{2}, \frac{1}{2}\right)$.
(b) Divide 4 muffins ($\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$)
(c) Give 6 students $\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{3}\right]$

Assume, by way of contradiction, that $f(7,6)>\frac{1}{3}$. So there is a protocol where every piece is $>\frac{1}{3}$.
Case 1: Some muffin is cut into ≥ 3 pieces. Then some piece is $\leq \frac{1}{3}$.
Case 2: Some muffin is uncut. Again, one can cut each uncut muffin $1 / 2-1 / 2$ and give the two halfs to the recipient.
Case 3: All muffins are cut into exactly two pieces. So there are 14 pieces.

ATTEMPT AT THE USUAL ARGUMENT:

Since there are 6 students, some student gets $\geq\left\lceil\frac{14}{6}\right\rceil=3$ pieces. That student gets some piece of size $\leq \frac{7}{6} \times \frac{1}{3}=\frac{7}{18}$. DARN
Since there are 6 students, some student gets $\leq\left\lfloor\frac{14}{6}\right\rfloor=2$ pieces. That student gets some piece of size $\geq \frac{7}{6} \times \frac{1}{2}=\frac{7}{12}$. That piece's buddy is of size $\leq 1-\frac{7}{12}=\frac{5}{12}$. DARN
So the usual method won't work. We need to use the HALF method.
We DO have 14 pieces.
Case 3a: Alice gets ≥ 4 shares. Then Alice has a piece $\leq \frac{7}{6} \times \frac{1}{4}=$ $\frac{7}{24}<\frac{1}{3}$.
Case 3b: Alice gets ≤ 1 shares, so Alice gets 1 share. Alice gets $\frac{7}{6}$ so 1 share is not enough!
Case 3c: Everyone gets 2 or 3 shares. Let $s_{2}\left(s_{3}\right)$ be the number of people who get 2 (3) shares.
$2 s_{2}+3 s_{3}=14$
$s_{2}+s_{3}=6$
SO $s_{2}=4$ and $s_{3}=2$.

A student who gets 2 shares is called a 2-student (and 3-shares is called a 3 -student). A share that goes to a 2 -student is a 2 -share. Note that there are 82 -shares and 63 -shares.

Claim: All 2-shares are $>\frac{1}{2}$.
Proof: Assume Alice has a 2-share $\leq \frac{1}{2}$. Then the other 2-share Alice has is $\geq \frac{7}{6}-\frac{1}{2}=\frac{2}{3}$. That pieces's buddy is $\leq 1-\frac{2}{3}=\frac{1}{3}$.

End of Proof of Claim

All 2-shares are $>\frac{1}{2}$. There are 82 -shares. Hence there are 8 pieces that are $>\frac{1}{2}$. This is impossible since 7 muffins were cut into two pieces so there are at most 7 piece $>\frac{1}{2}$.

