\documentclass[12pt,HW250,ifthen]{article} \usepackage{comment} \newcommand{\into}{{\rightarrow}} \newcommand{\lf}{\left\lfloor} \newcommand{\rf}{\right\rfloor} \newcommand{\lc}{\left\lceil} \newcommand{\rc}{\right\rceil} \newcommand{\Ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor} \newcommand{\Z}{{\sf Z}} \newcommand{\N}{{\sf N}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\Rpos}{{\sf R}^+} \usepackage{amsmath} \begin{document} \centerline{Homework 8, Morally due Mon Apr 16, 3:30PM} \newif{\ifshowsoln} \showsolntrue % comment out to NOT show solution inside \ifshowsoln and \fi blocks. Throughout this HW: \begin{itemize} \item Let $f(m,s)$ be the muffin function (from the talk Bill gave on Muffins). \item To prove that, say $f(11,5)=\frac{13}{30}$ you would need to BOTH give a PROCEDURE that allocates 11 muffins to 5 people with smallest piece $\frac{13}{30}$ AND prove that there is no BETTER procedure. \item You CANNOT use the Floor-Ceiling Theorem, though you can use the same kind of reasoning in a particular case. \end{itemize} \begin{enumerate} \item (50 points) \newcommand{\ob}[1]{\frac{#1}{5}} Prove $f(9,5)=\ob 2$. \item (50 points) Prove $f(7,6)=\frac{1}{3}$. \end{enumerate} \end{document}