1. (40 points) Throughout this problem Bill has a 2 -sided dice with numbers 1,2 and a 3 -sided die with numbers $1,2,3$.
(a) (15 points) Assume both dice are fair. Bill throws both of them. For $2 \leq i \leq 5$ give the prob that the sum is i.
(b) (20 points) Let $0 \leq p \leq \frac{1}{2}$. Assume the 2 -sided dice is fair but the 3 -sided dice has
Prob of $1=p$
Prob of $2=1-2 p$
Prob of $3=p$
Bill throws both of them. For $2 \leq i \leq 5$ give the prob that the sum is i.
(c) (5 points) Let p be as in the last part. Is there a value of p such that all of the sums $2,3,4,5$ come up with the same probability.
(d) (0 points but thing about it) Can you load two 6 -sided dice to get fair sums?

SOLUTION TO PROBLEM ONE

1) Both dice are fair.
$\operatorname{Prob}(2)=\operatorname{Prob}$ of $(1,1)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$.
$\operatorname{Prob}(3)=\operatorname{Prob}$ or either $(1,2)$ or $(2,1)=2 \times \frac{1}{2} \times \frac{1}{3}=\frac{1}{3}$.
$\operatorname{Prob}(4)=\operatorname{Prob}$ or either $(1,3)$ or $(2,2)=2 \times \frac{1}{2} \times \frac{1}{3}=\frac{1}{3}$.
$\operatorname{Prob}(5)=\operatorname{Prob}$ or $(2,3)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$.
2)

$\operatorname{Prob}(2)=\operatorname{Prob}$ of $(1,1)=\frac{1}{2} \times p=\frac{p}{2}$.
$\operatorname{Prob}(3)=\operatorname{Prob}$ or either $(1,2)$ or $(2,1)=\frac{1}{2} \times(1-2 p)+\frac{1}{2} p=\frac{1-p}{2}$.
$\operatorname{Prob}(4)=\operatorname{Prob}$ or either $(1,3)$ or $(2,2)=\frac{1}{2} \times p+\frac{1}{2} \times(1-2 p)=\frac{1-p}{2}$.
$\operatorname{Prob}(5)=\operatorname{Prob}$ or $(2,3)=\frac{1}{2} \times p=\frac{p}{2}$.
3) If $p=1 / 2$ then all of the probabilities are $\frac{1}{4}$.

GO TO NEXT PAGE
2. (60 points) On the planet Vorlon they play a game that is similar to what we call Poker but with a different deck of cards.
Every card has a rank from $\{1,2, \ldots, 7\}$.
Every card has a suite from $\{R, B\}$.
Every player gets 3 cards.
In most of the questions we will ask for the prob of a certain type of hand. Give the answer to 4 places since the last question is to rank them.
(a) What is prob of a straight that is NOT a flush (e.g., $3 R, 4 R, 5 B$) We DO allow wrap-around, so 7-1-2 counts.
(b) What is prob of a flush that is NOT a straight (e.g., 2R, 4R, 9R)
(c) What is prob of a straight flush (e.g., $3 R, 4 R, 6 R$) We DO allow wrap-around, so 7-1-2 counts.
(d) What is prob of a pair (e.g., $3 R, 3 B, 7 R$). Note that a pair cannot be a straight of a flush.
(e) What is prob of getting NOTHING- a hand that is neither a straight, nor a flush, nor does it contain 2 of a kind. (e.g., $3 R$, $5 R, 6 B$)
(f) Rank the types of hands from most likely to least likely.

SOLUTION TO PROBLEM TWO

Note that the total number of hands is $\binom{14}{3}=364$.
(a) A straight that is NOT a flush.

Pick a rank r - there are 7 ways to do this. Then you have $r, r+1, r+2$. Now pick for each card R or B , but DO NOT pick RRR or BBB so you pick one of 6 R -B sequences. So 42 . So prob is $\frac{42}{364}=\frac{3}{26} \sim 0.12$. NOTE FOR LATER: 42 ways to get a straight, NOT a flush.
(b) A flush that is NOT a straight (e.g., $2 R, 4 R, 9 R$)

Pick a suit - there are 2 ways to do this. Then pick 3 ranks there are $\binom{7}{3}$ ways to do that. NO- need to make sure they are
not a straight. There are 7 straights: $123,234, \ldots, 712$. So prob is $2 \times\left(\binom{7}{3}-7\right)=2(35-7)=2 \times 28=56$. So Prob is
$\frac{56}{364} \sim 0.154$. NOTE FOR LATER: 56 ways to get a flush, NOT a straight.
(c) A straight flush.

Pick a rank - there are 7 ways to do this. Pick a suite - there are 2 ways to do this. So there are $7 \times 2=14$ ways to get a straight flush. So prob is $\frac{14}{364} \sim 0.038$.
NOTE FOR LATER: 14 ways to get a straight flush.
(d) A pair.

Pick a rank - there are 7 ways to do this. The suits are determinedone will be R and one will be B . Then pick the other card - there are $14-2=12$ ways to do this. So there are $7 \times 12=84$ ways to get a pair. So prob is $\frac{84}{364} \sim 0.23$.
NOTE FOR LATER: 84 ways to get a pair.
(e) NOTHING.

All of the above types are disjoint. Hence we need only subtract. The number of hands with NOTHING is
$364-42-56-14-84=168$. So the prob of getting nothing is $\frac{168}{364} \sim 0.46$.
(f) RANK: from most likely to least likely:

NOTHING: Prob ~ 0.46.
A PAIR: Prob ~ 0.23.
FLUSH THAT IS NOT A STRAIGHT: Prob ~0.154.
STRAIGHT THAT IS NOT A FLUSH: Prob ~ 0.12.
STRAIGHT FLUSH: Prob ~ 0.038.

