Homework 10, Morally due Tue Apr 30, 3:30PM THIS HW IS THREE PAGES!!!!!!!!!!

1. (0 points but if you don't show up to the final I will assume you got this problem wrong and you will get 0 points for this entire HW) WHEN IS THE FINAL? WHERE IS THE FINAL?
2. (30 points)
(a) (15 points) Josh rearranges the letters in the sequence machinery randomly. What is the probability that the new sequences is machinery
(b) (15 points) Bill makes lunch for her darling. There is a sandwicheither PBJ, Turkey, Tomato, Egg salad, or Tuna fish, a fruit- either apple or blueberries or blackberries or a banana, and a snackeither pretzels, potato chips or applesauce. Suppose Bill selects a lunch to prepare uniformly at random out of all the possibilities. What is the probability that Bill's darling gets a lunch that DOES NOT have both an apple and applesauce.

GO TO NEXT PAGE

3. (40 points) I have two coins.

One of them is FAIR
One of them is BIASED: $\operatorname{Prob}(\mathrm{H})=\frac{7}{12}, \operatorname{Prob}(\mathrm{~T})=\frac{5}{12}$.
One is chosen at random (prob $1 / 2$ for each). That coin is tossed 20 times.

Do the following TWENTY ONE problems and put them in a table. For the first one show us your work (you can use a calculator or your program for the arithmetic), but the rest just have the answers in the table.

You will want to write a computer program for them. Note when the prob of biased goes from $>\frac{1}{2}$ to $<\frac{1}{2}$.

- The result is HHHHHHHHHH (so 20 H's and 0 T). What is the prob that the coin is biased?
- The result is HHHHHHHHHT (so 19 H's and 1 T). What is the prob that the coin is biased?
- The result is HHHHHHHHTT (so 18 H's and 2 T). What is the prob that the coin is biased?
-
- The result is TTTTTTTTTT (so 0 H's and 20 T). What is the prob that the coin is biased?

All numbers should be to six places, so for example
$(7 / 12)^{20} \sim 0.000021$
GO TO NEXT PAGE
4. (30 points) I have two 10 -sided die.

One of them is FAIR
One of them is BIASED: $\operatorname{Prob}(1)=\operatorname{Prob}(10)=\frac{1}{2}$ and $\operatorname{Prob}(2)=\cdots=\operatorname{Prob}(9)=0$.
(a) I roll the fair die. What is the expected value? What is the variance?
(b) I roll the biased die. What is the expected value? What is the variance?
(c) I roll both and add the values. What is the expected value? What is the variance?

