Homework 10, Morally due Tue Apr 30, 3:30PM

THIS HW IS THREE PAGES!!!!!!!!!!

1. (0 points but if you don't show up to the final I will assume you got this problem wrong and you will get 0 points for this entire HW) WHEN IS THE FINAL? WHERE IS THE FINAL?

WHEN: Saturday May 18 4-6
WHERE: PHY 1201
2. (30 points)
(a) (15 points) Josh rearranges the letters in the sequence machinery randomly. What is the probability that the new sequences is machinery
(b) (15 points) Bill makes lunch for her darling. There is a sandwicheither PBJ, Turkey, Tomato, Egg salad, or Tuna fish, a fruit- either apple or blueberries or blackberries or a banana, and a snackeither pretzels, potato chips or applesauce. Suppose Bill selects a lunch to prepare uniformly at random out of all the possibilities. What is the probability that Bill's darling gets a lunch that DOES NOT have both an apple and applesauce.

SOLUTION TO PROBLEM ONE

1) There are 9 ! ways to arrange the letters, but only one of them is machinery. So the prob is $\frac{1}{9!}$
2) There are $5 \times 4 \times 3$ ways for Bill to make lunch for her darling. In how many ways DOES the lunch have both an apple and applesauce? Only 5 since the fruit and snack are already picked. Hence the prob that the lunch DOES have both an apple and applesauce is $\frac{5}{5 \times 4 \times 3}=\frac{1}{12}$. Hence the prob that the lunch does not have both is $1-\frac{1}{12}=\frac{11}{12}$.
Incidentally, Bill's darling actually does not mind having both an apple and applesauce.

GO TO NEXT PAGE

3. (40 points) I have two coins.

One of them is FAIR
One of them is BIASED: $\operatorname{Prob}(H)=\frac{7}{12}, \operatorname{Prob}(T)=\frac{5}{12}$.
One is chosen at random (prob $1 / 2$ for each). That coin is tossed 20 times.
Do the following TWENTY ONE problems and put them in a table. For the first one show us your work (you can use a calculator or your program for the arithmetic), but the rest just have the answers in the table.

You will want to write a computer program for them. Note when the prob of biased goes from $>\frac{1}{2}$ to $<\frac{1}{2}$.

- The result is HHHHHHHHHH (so 20 H's and 0 T). What is the prob that the coin is biased?
- The result is HHHHHHHHHT (so 19 H's and 1 T). What is the prob that the coin is biased?
- The result is HHHHHHHHTT (so 18 H's and 2 T). What is the prob that the coin is biased?
-
- The result is TTTTTTTTTT (so 0 H's and 20 T). What is the prob that the coin is biased?

All numbers should be to six places, so for example

$$
(7 / 12)^{20} \sim 0.000021
$$

SOLUTION TO PROBLEM TWO

Let F be Fair and B be Biased.

$$
P\left(B \mid H^{20}\right)=\frac{P(B) \times P\left(H^{20} \mid B\right)}{P\left(H^{20}\right)}
$$

$P(B)=\frac{1}{2}=0.5$
$\left.P\left(H^{20} \mid B\right)=\frac{7}{12}\right)^{20} \sim 0.000021$
$P\left(H^{20}\right)=P\left(H^{20} \mid B\right) P(B)+P\left(H^{20} \mid F\right) P(F)=\frac{1}{2}\left(\left(\frac{7}{12}\right)^{20}+\left(\frac{1}{2}\right)^{20}\right)=$. 000011.
Hence we get

$$
\begin{gathered}
0.5 \times(0.000021)(0.000011)=0.9545454 \\
\text { GO TO NEXT PAGE }
\end{gathered}
$$

4. (30 points) I have two 10 -sided die.

One of them is FAIR
One of them is BIASED: $\operatorname{Prob}(1)=\operatorname{Prob}(10)=\frac{1}{2}$ and $\operatorname{Prob}(2)=\cdots=\operatorname{Prob}(9)=0$.
(a) I roll the fair die. What is the expected value? What is the variance?
(b) I roll the biased die. What is the expected value? What is the variance?
(c) I roll both and add the values. What is the expected value? What is the variance?

SOLUTION TO PROBLEM THREE

(a) Expected value $=$ $\frac{11}{2}$. Variance $=\frac{33}{4}$.
(b) Expected value $=\frac{11}{2}$. Variance $=\frac{81}{4}$.
(c) Expected value $=11$. Variance $=\frac{57}{2}$.

