Homework 11, Morally due Tue May 7, 3:30PM THIS HW IS THREE PAGES!!!!!!!!!!

THROUGHOUT THIS HW: Unless I tell you what n is, assume n is large enough so that we can use our approximations and the Ind assumptions we made in class. (If you were not in class then — too bad for you!)

THROUGHOUT THIS HW: Assume the grader does not already know the material so clearly explain what you are doing or how you are setting up your program.

- 1. (0 points but if you don't show up to the final I will assume you got this problem wrong and you will get 0 points for this entire HW) WHEN IS THE FINAL? WHERE IS THE FINAL?
- 2. (40 points) We are going to put m balls into n boxes, uniformly at random. You can assume n is large so our approximations work.
 - (a) (20 points) What is the probability (approx) that some box has at least 4 balls in it?
 - (b) (20 points) Make a statement:

If $m \ge XXX$ then the prob that some box has 4 balls in it is $\ge \frac{3}{4}$. FILL IN THE XXX. XXX will depend on n. Try to make XXX as small as possible. Please provide a number for the constant in-front of n.

GO TO NEXT PAGE

- 3. (30 points) Assume n is large enough for our approximations to work. Also assume that $n^{0.9}$ is an integer. We are going to put $n^{0.9}$ balls into n boxes, uniformly at random. (Yes you read that right.)
 - (a) What is the prob that some box has ≥ 2 balls?
 - (b) What is the prob that some box has ≥ 3 balls?
 - (c) Find a CONSTANT XXX (So XXX is ind of n) such that the prob that some box has $\geq XXX$ balls is $\geq \frac{1}{2}$. Try to make XXX as large as possible. (You may use that $\binom{n}{k} \sim n^k$.)

SHOW all of your work so that if the grader is not familiar with the problem he can still understand your answer.

GO TO NEXT PAGE

4. (30 points) Let p_n be the EXACT answer to the *n*-person hatcheck problem. Recall that

$$p_n = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} + \dots + (-1)^n \frac{1}{n!}$$

Write a program that does the following

For $2 \le n \le 20$

- (a) Compute p_n exactly. (To deal with the precision issues in your code, please keep the numerator and denominator of the computed fractions separately and perform only one division in the end.)
- (b) Compete $\frac{1}{e} p_n$ (it may be positive or negative).
- (c) Put your results in a nice easy-to-read tables with first column n and the second column p_n and third column $\frac{1}{e} p_n$.
- (d) Make a conjecture about when the $\frac{1}{e} p_n$ is positive and when it is negative.
- (e) Make a conjecture about how quickly $|\frac{1}{e} p_n|$ goes to zero. For example, maybe you think $|\frac{1}{e} p_n| \sim \frac{\pi}{n}$. (HINT: I do not think that.)

Your answer should have the columns and the conjectures.