Homework 12, Morally due Tue May 14, 3:30PM
THIS HW IS ONE PAGES!!!!!!!!!!
WHEN IS THE FINAL? Saturday May 18, 4-6
WHERE IS THE FINAL? PHYSICS 1201

1. (30 points - 10 each) Show that the following sets are uncountable
(a) The set of functions from N to N that are strictly increasing. (That means that, for all $x, y \in \mathbf{N}$, if $x<y$ then $f(x)<f(y)$.)
(b) The set of functions from N to PRIMES.
(c) The set of functions from N to PRIMES that are strictly increasing.
2. (40 points - 20 points each) Let $\left(A, \leq_{1}\right)$ and $\left(B, \leq_{2}\right)$ be ordered sets. An order preserving bijection f from A to B is a bijection from A to B such that, for all $x, y \in A$.

$$
x \leq_{1} y \rightarrow f(x) \leq_{2} f(y) .
$$

(a) Show that there is NO order preserving bijections from N to Z .
(b) Show that there is NO order preserving bijections from N to $\mathrm{Q} \geq 0$. (Thats the rationals ≥ 0.)
3. (30 points) Prove or disprove: If A_{1}, A_{2}, \ldots are countable and disjoint then $A_{1} \times A_{2} \times A_{3} \times \cdots$ is countable.

