Homework 12, Morally due Tue May 14, 3:30PM
THIS HW IS ONE PAGES!!!!!!!!!!
WHEN IS THE FINAL? Saturday May 18, 4-6
WHERE IS THE FINAL? PHYSICS 1201

1. (30 points - 10 each) Show that the following sets are uncountable
(a) The set of functions from N to N that are strictly increasing. (That means that, for all $x, y \in \mathbf{N}$, if $x<y$ then $f(x)<f(y)$.)
(b) The set of functions from N to PRIMES.
(c) The set of functions from N to PRIMES that are strictly increasing.

SOLUTION TO PROBLEM ONE

1) Assume, BWOC, that $f_{1}, f_{2}, f_{3}, \ldots$ is the set of ALL increasing functions.

We CONSTRUCT a function that is increasing but is not one of f_{1}, f_{2}, \ldots
The function is F. We will make sure that $(\forall i)\left[F(i) \neq f_{i}(i)\right]$ and hence $(\forall i)\left[F \neq f_{i}\right]$. The trick will be to make sure that F is increasing.
$F(0)=f_{0}(0)+1$
If $i \geq 1$ then let

$$
F(i)=\max \left\{F(0), \ldots, F(i-1), f_{i}(i)\right\}+1
$$

F is clearly increasing AND, for all $i, F(i) \neq f_{i}(i)$.
2) Assume, BWOC, that $f_{1}, f_{2}, f_{3}, \ldots$ is the set of ALL functions from N to the PRIMES

We CONSTRUCT a function that is from N to PRIMES but is not one of f_{1}, f_{2}, \ldots The trick will be to make sure that F only takes on values in the primes.

$$
F(i)=\text { the next prime after } f_{i}(i)
$$

F clearly only takes on prime values AND, for all $i, F(i) \neq f_{i}(i)$.
3) Assume, BWOC, that $f_{1}, f_{2}, f_{3}, \ldots$ is the set of ALL increasing functions from N to the PRIMES.

We CONSTRUCT a function that is increasing and goes from N to PRIMES but is not one of f_{1}, f_{2}, \ldots
The trick will be to make sure that F only takes on values in the primes AND is increasing.
$F(0)=$ the next prime after $f_{0}(0)$.
If $i \geq 1$ then

$$
F(i)=\text { the next prime after } F(0), F(1), \ldots, F(i-1), f_{i}(i)
$$

F clearly only takes on prime values, is increasing, AND, for all i, $F(i) \neq f_{i}(i)$.
2. (40 points - 20 points each) Let $\left(A, \leq_{1}\right)$ and $\left(B, \leq_{2}\right)$ be ordered sets. An order preserving bijection f from A to B is a bijection from A to B such that, for all $x, y \in A$.

$$
x \leq_{1} y \rightarrow f(x) \leq_{2} f(y) .
$$

(a) Show that there is NO order preserving bijections from N to Z .
(b) Show that there is NO order preserving bijections from N to $\mathrm{Q} \geq 0$. (Thats the rationals ≥ 0.)

SOLUTION TO PROBLEM TWO

1) Assume, BWOC, that there is an order preserving bijection f from N to \mathbf{Z}. Let $f(0)=a$. Note that $a \in \mathbf{Z}$. Since f is a bijection from \mathbf{N} to \mathbf{Z} there exists $b \in \mathbf{N}$ such that $f(b)=a-1$. Note that
$0<b$ and $f(0)=a>a-1=f(b)$.
This contradicts f being order preserving.
2) Assume, BWOC, that there is an order preserving bijection f from N to $\mathrm{Q}^{\geq 0}$. Let $f(0)=a$ and $f(1)=b$. Since $0<1$ we know that $a<b$. Recall that $a, b \in \mathrm{Q}^{\geq 0}$ Let $c=\frac{a+b}{2}$. Since f is a bijection there exists $d \in \mathrm{~N}$ such that $f(b)=d$. Note that
Since $a<c<b$ we know that $0<d<1$. This is a contradiction since $d \in \mathbf{N}$.
3. (30 points) Prove or disprove: If A_{1}, A_{2}, \ldots are countable and disjoint then $A_{1} \times A_{2} \times A_{3} \times \cdots$ is countable.

SOLUTION TO PROBLEM THREE

This is FALSE.
Proof Omitted

