CMSC250 Fall 2018 Circuits

Logic == Math?

What calculations can we do with logic?

Add, subtract, multiply?

George Boole – 1800's. Boolean logic

Claude Shannon – 1937. Logic == circuits == math

T = 1
$$p v q == p+q \quad p v \sim q$$

F = 0 $p \wedge q == p*q$ is
 $\sim p == (1-q) \quad p + (1-q)$

CMSC 250

Find Boolean Formula

- For each row with output 1 obtain "mini-formula" which is 1 exactly on that row.
- OR together all of the mini-formulas

111, 110, and 100 all output 1
p^q^r, p^q^-r, p^-q^-r
(p^q^r)^v(p^q^-r)^v(p^-q^-r)

Draw a circuit for:

 p, q & r are inputs.
 Simplify before building the circuit.

D	D	r	output
	4		
	L	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0 9

CMSC 250

Number conversions

 Different number system bases are used when convenient

- some commonly-used bases are 10 (decimal), 2 (binary), 8 (octal), 16 (hexadecimal)
- the base tells how many different numerals are used
- the base also determines the value of each place
- Conversions from anything to base 10
 - use the definition of the number system
- Conversions from base 10 to anything
 - use repeated integer division

Addition of binary numbers

Carry if the number would be too large for the number system- if it is greater than 1

Addition of octal and hexadecimal numbers

 Carry if the number would be too large for the number system (larger than 7 or 15)

Two's complement

To represent negative values in binary:

- 1. Find the binary equivalent of the absolute value.
- 2. Pad on the left to completely fill the bits in the specified bit width
- 3. Switch all of the 1's to 0's and 0's to 1's.
- 4. Add 1 to the result.
- Example: find the 8-bit two's complement representation of -43:
 - 1. $43_{10} = 101011_2$
 - 2. 00101011₂
 - 3. 11010100₂
 - 4. $11010101_2 = -43_{10}$

Using a circuit for adding two bits

Write as a logic expression

Translate to circuits

input		output	
р	q	carry	sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half adder

Parallel adders

- Chain these half adders and full adders together for multi-bit addition
- $A_3A_2A_1A_0 + B_3B_2B_1B_0 = S_3S_2S_1S_0$

Topic not covered

Simplifying circuits: there are techniques that exist (which are complex).