Bayes Theorem

Bayes's theorem

- $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \cdot \frac{\operatorname{Pr}[A]}{\operatorname{Pr}[B]}$

Note: This is very useful in both this course and in life.

Example of Application of Bayes's theorem

$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \cdot \frac{\operatorname{Pr}[A]}{\operatorname{Pr}[B]}$. There are two coins:

1) Coin F is fair: $\operatorname{Pr}(H)=\operatorname{Pr}(T)=\frac{1}{2}$.
2) Coin B is biased: $\operatorname{Pr}(H)=\frac{3}{4}, \operatorname{Pr}(T)=\frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets all H. Is the coin definitely biased?

Example of Application of Bayes's theorem

$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \cdot \frac{\operatorname{Pr}[A]}{\operatorname{Pr}[B]}$. There are two coins:

1) Coin F is fair: $\operatorname{Pr}(H)=\operatorname{Pr}(T)=\frac{1}{2}$.
2) Coin B is biased: $\operatorname{Pr}(H)=\frac{3}{4}, \operatorname{Pr}(T)=\frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets all H. Is the coin definitely biased? No.

Example of Application of Bayes's theorem

$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \cdot \frac{\operatorname{Pr}[A]}{\operatorname{Pr}[B]}$. There are two coins:

1) Coin F is fair: $\operatorname{Pr}(H)=\operatorname{Pr}(T)=\frac{1}{2}$.
2) Coin B is biased: $\operatorname{Pr}(H)=\frac{3}{4}, \operatorname{Pr}(T)=\frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets all H. Is the coin definitely biased? No.

What is Prob that it is biased? VOTE:

1. Between 0.99 and 1.0
2. Between 0.98 and 0.99
3. Between 0.97 and 0.98
4. Less than 0.97

Example of Application of Bayes's theorem

$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B \mid A] \cdot \frac{\operatorname{Pr}[A]}{\operatorname{Pr}[B]}$. There are two coins:

1) Coin F is fair: $\operatorname{Pr}(H)=\operatorname{Pr}(T)=\frac{1}{2}$.
2) Coin B is biased: $\operatorname{Pr}(H)=\frac{3}{4}, \operatorname{Pr}(T)=\frac{1}{4}$.

Alice picks coin at random, flips 10 times, gets all H. Is the coin definitely biased? No.

What is Prob that it is biased? VOTE:

1. Between 0.99 and 1.0
2. Between 0.98 and 0.99
3. Between 0.97 and 0.98
4. Less than 0.97

We will see that it is 0.982954 , so between 0.98 and 0.99 .

Example of Application of Bayes's theorem

$$
\operatorname{Pr}\left(B \mid H^{10}\right)=\frac{\operatorname{Pr}(B) \operatorname{Pr}\left(H^{10} \mid B\right)}{P\left(H^{10}\right)}
$$

$\operatorname{Pr}(B)=\frac{1}{2}$
$\operatorname{Pr}\left(H^{10} \mid B\right)=\left(\frac{3}{4}\right)^{10}$
$\operatorname{Pr}\left(H^{10}\right)=\operatorname{Pr}\left(H^{10} \cap F\right)+\operatorname{Pr}\left(H^{10} \cap B\right)$
$\operatorname{Pr}\left(H^{10} \cap F\right)=\operatorname{Pr}\left(H^{10} \mid F\right) \operatorname{Pr}(F)+\operatorname{Pr}\left(H^{10} \mid B\right) \operatorname{Pr}(B)=$
$\frac{1}{2}\left(\left(\frac{1}{2}\right)^{10}+\left(\frac{3}{4}\right)^{10}\right)$
Put it together to get

$$
\operatorname{Pr}\left(B \mid H^{10}\right)=\frac{1}{1+(2 / 3)^{10}}=0.982954
$$

Example of Application of Bayes's theorem

$$
\operatorname{Pr}\left(B \mid H^{10}\right)=\frac{\operatorname{Pr}(B) \operatorname{Pr}\left(H^{10} \mid B\right)}{P\left(H^{10}\right)}
$$

$\operatorname{Pr}(B)=\frac{1}{2}$
$\operatorname{Pr}\left(H^{10} \mid B\right)=\left(\frac{3}{4}\right)^{10}$
$\operatorname{Pr}\left(H^{10}\right)=\operatorname{Pr}\left(H^{10} \cap F\right)+\operatorname{Pr}\left(H^{10} \cap B\right)$
$\operatorname{Pr}\left(H^{10} \cap F\right)=\operatorname{Pr}\left(H^{10} \mid F\right) \operatorname{Pr}(F)+\operatorname{Pr}\left(H^{10} \mid B\right) \operatorname{Pr}(B)=$
$\frac{1}{2}\left(\left(\frac{1}{2}\right)^{10}+\left(\frac{3}{4}\right)^{10}\right)$
Put it together to get

$$
\begin{gathered}
\operatorname{Pr}\left(B \mid H^{10}\right)=\frac{1}{1+(2 / 3)^{10}}=0.982954 \\
\operatorname{Pr}\left(B \mid H^{n}\right)=\frac{1}{1+(2 / 3)^{n}}
\end{gathered}
$$

