Honors HW 10. Due Apr 26

1. Prove that the function below is a bijection from \mathbb{N} to \mathbb{Z}. Note that this explicilty shows \mathbb{N} and \mathbb{Z} are the same size

$$
f(n)= \begin{cases}\frac{n}{2} & n \text { is even } \\ \frac{-(n+1)}{2} & n \text { is odd }\end{cases}
$$

2. Show that if both f and g are onto functions then $f \circ g$ is also onto.
3. Consider $x^{9}+5 x^{3}+3 x^{2}$. Give an infinite Domain and Codomain that has the following properties (Give a counterexample when something is not one to one or onto):
(Hint: Graph it)
(a) One to One: Yes, Onto:Yes
(b) One to One: Yes, Onto: No
(c) One to One: No, Onto:Yes
(d) One to One: No, Onto: No
