Honors HW 12. Due May 11

1. Let $n \in \mathrm{~N}$.

Alice has $a \in\{0,1\}^{n}$ on her forehead. Bob has $b \in\{0,1\}^{n}$ on her forehead. Carol has $c \in\{0,1\}^{n}$ on her forehead. Donna has $c \in\{0,1\}^{n}$ on her forehead.
They view a, b, c, d as n-bits numbers.
They want to know if $a+b+c+d=2^{n}-1$.
Show how they can compute this with LESS THAN n bits of communication.
2. Let $n \in \mathbf{N}$. Let $i \in \mathbf{N}$. Think of $k \ll n$.

Society now has done away with names and everyone is a number. A_{1} has $a_{1} \in\{0,1\}^{n}$ on her forehead. A_{2} has $a_{2} \in\{0,1\}^{n}$ on her forehead. $\ldots A_{k}$ has $a_{k} \in\{0,1\}^{n}$ on her forehead.

They view a_{1}, \ldots, a_{k} as n-bits numbers.
They want to know if $a_{1}+\cdots+a_{k}=2^{n}-1$.
Show how they can compute this with LESS THAN n bits of communication.

Recall that for the 2-egg problem we have that the number of drops needed is roughly $\sqrt{2} \sqrt{n}$.
Let $D(e, n)$ be number of drops needed if you have e eggs and n floors.
3. Write a program that will, given e, n, compute $D\left(e^{\prime}, n^{\prime}\right)$ for all $1 \leq e^{\prime} \leq$ e and $1 \leq n^{\prime} \leq n$.
4. Run your program for $e=3$ and $n=1, \ldots, 100$. Graph the function. Try to determine what the function is approximately.
5. Run your program for $e=4$ and $n=1, \ldots, 100$. Graph the function. Try to determine what the function is approximately.
6. Is there some e such that

$$
D(e, 100)=D(e+1,100)=D(e+2,100) \cdots ?
$$

