Honors HW 12. Due May 11

1. Let \(n \in \mathbb{N} \).

Alice has \(a \in \{0,1\}^n \) on her forehead. Bob has \(b \in \{0,1\}^n \) on her forehead. Carol has \(c \in \{0,1\}^n \) on her forehead. Donna has \(c \in \{0,1\}^n \) on her forehead.

They view \(a, b, c, d \) as \(n \)-bits numbers.

They want to know if \(a + b + c + d = 2^n - 1 \).

Show how they can compute this with LESS THAN \(n \) bits of communication.

2. Let \(n \in \mathbb{N} \). Let \(i \in \mathbb{N} \). Think of \(k \ll n \).

Society now has done away with names and everyone is a number. \(A_1 \) has \(a_1 \in \{0,1\}^n \) on her forehead. \(A_2 \) has \(a_2 \in \{0,1\}^n \) on her forehead. \(\ldots \) \(A_k \) has \(a_k \in \{0,1\}^n \) on her forehead.

They view \(a_1, \ldots, a_k \) as \(n \)-bits numbers.

They want to know if \(a_1 + \cdots + a_k = 2^n - 1 \).

Show how they can compute this with LESS THAN \(n \) bits of communication.

Recall that for the 2-egg problem we have that the number of drops needed is roughly \(\sqrt[2]{n} \).

Let \(D(e, n) \) be number of drops needed if you have \(e \) eggs and \(n \) floors.

3. Write a program that will, given \(e, n \), compute \(D(e', n') \) for all \(1 \leq e' \leq e \) and \(1 \leq n' \leq n \).

4. Run your program for \(e = 3 \) and \(n = 1, \ldots, 100 \). Graph the function.

Try to determine what the function is approximately.

5. Run your program for \(e = 4 \) and \(n = 1, \ldots, 100 \). Graph the function.

Try to determine what the function is approximately.

6. Is there some \(e \) such that

\[
D(e, 100) = D(e + 1, 100) = D(e + 2, 100) \cdots ?
\]