Homework 6

250H

$$
\text { If } n_{1} \equiv 5(\bmod 10) \text { and } n_{2} \equiv 10(\bmod 20) \text { then } n_{1} n_{2} \equiv X(\bmod Y)
$$

We show how to think about the problem and then give the answer.
$n_{1} \equiv 5(\bmod 10)$, so $n_{1}=10 k_{1}+5$ for some k_{1}.
$n_{2} \equiv 10(\bmod 20)$, so $n_{2}=20 k_{2}+10$ for some k_{2}.
SO
$n_{1} n_{2}=200 k_{1} k_{2}+100 k_{1}+100 k_{2}+50$
AH , so

$$
n_{1} n_{2}=100\left(2 k_{1} k_{2}+k_{1}+k_{2}\right)+50
$$

SO

$$
n_{1} n_{2} \equiv 50(\bmod 100)
$$

For all $x, y \in \mathrm{Q}-\{0\}, x \pi+y \notin \mathrm{Q}$.

Let $x, y \in \mathrm{Q}-\{0\}$.
Assume, by way of contradiction, that $x \pi+y \in \mathbf{Q}$.
so there exists $a, b \in \mathrm{~N}$ such that
$x \pi+y=\frac{a}{b}$.
Hence
$\pi=\left(\frac{a}{b}-y\right) / x$.
Since rationals are closed under,,$+- \div, \times$ we have that π is rational, which is a contradiction.
$(\forall x, z \in \mathrm{Q})[x<z \rightarrow(\exists y \notin \mathrm{Q})[x<y<z]$
Let $x, z \in \mathrm{Q}$ with $x<z$. Let $n \in \mathrm{~N}$ be such that $\frac{\pi}{n}<z-x$. Then we have

$$
x<x+\frac{\pi}{n}<z
$$

By Part $1 x+\frac{\pi}{n} \notin \mathrm{Q}$.

$(\forall x, z \notin \mathrm{Q})(\exists y \in \mathrm{Q})[x<y<z]$

We will assume $x, z \in(0,1)$. We leave it to the reader to adjust the proof for other cases.
Let $x=0 . x_{1} x_{2} \cdots$.
Let $z=0 . z_{1} z_{2} \cdots$.
Since $x<z$ there exists a least i such that:
$x_{1}=z_{1}$
$x_{2}=z_{2}$
\vdots
$x_{i-1}=z_{i-1}$
$x_{i}<z_{i}$.
Let
$y=x_{1} \cdots x_{i-1} z_{i}$.
This is a finite expansion so $y \in \mathbf{Q}$.
Clearly
$x<y<z$.

Prove or disprove: $x_{1}+y_{1} \equiv x_{2}+y_{2}$.

$$
\begin{aligned}
& x_{1}=x_{2}+k m_{x} \\
& y_{1}=y_{2}+k m_{y}
\end{aligned}
$$

ADD these together to get:

$$
x_{1}+y_{1}=x_{2}+y_{2}+k\left(m_{x}+m_{y}\right) .
$$

$$
x_{1}+y_{1} \equiv x_{2}+y_{2} .
$$

Prove or disprove: $x_{1} y_{1} \equiv x_{2} y_{2}$.

$$
\begin{aligned}
& x_{1}=x_{2}+k m_{x} \\
& y_{1}=y_{2}+k m_{y}
\end{aligned}
$$

MULTIPLY these together to get:
$x_{1} y_{1}=x_{2} y_{2}+k m_{x} y_{1}+k m_{y} x_{2}+k^{2} m_{x} m_{y}=x_{2} y_{2}+k\left(m_{x} y_{1}+m_{y} x_{2}+k m_{x} m_{y}\right)$

So
$x_{1} y_{1} \equiv x_{2} y_{2}$.

Prove or disprove: $x_{1}^{y_{1}} \equiv x_{2}^{y_{2}}$.

We NEED a counterexample to show that this is FALSE.

$$
m=5
$$

$$
\begin{aligned}
& x_{1}=2, x_{2}=2, y_{1}=7, y_{2}=8 \\
& x_{1}^{x_{2}}=2^{2}=4 \equiv 4(\bmod 5) \\
& y_{1}^{y_{2}}=7^{8}=5764801 \equiv 1(\bmod 5)
\end{aligned}
$$

$$
\mathrm{AH}-1 \not \equiv 4(\bmod 5)
$$

Honors HW 7

What is the coefficient of x^{2021} in the Taylor Expansion of

$$
\frac{1}{x^{8}-x^{7}-x+1}
$$

Do by hand (NO programming) and show your work.

$$
\begin{aligned}
& \frac{1}{x^{8}-x^{7}-x+1}=\frac{1}{x-1} \frac{1}{x^{7}-1}=\frac{1}{1-x} \frac{1}{1-x^{7}} \\
& =\left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x^{7}+x^{14}+\cdots\right)
\end{aligned}
$$

The coefficient of x^{n} is the number of ways to make n cents with 1 -coins and 7 -coins. We call 1 -cent coins pennies and 7 -cent coins emilies.

Let
$f(n)$ be the number of ways to make n cents using pennies and emilies.
$f(0)=1$
$f(1)=f(2)=\cdots f(6)=1$.
$f(7)=2$: either 7 pennies or 1 emily.
$f(8)=2$: you NEED to use 1 penny. After that you have $f(7)$.
More generally, of $n \in \mathrm{~N}$ and $0 \leq i \leq 6$, then
$f(7 n+i)=n+1$.
$2021=7 * 288+5$.
So $f(2021)=289$.
So the answer is 289 .

