Homework 6

250H

If $n_1 \equiv 5 \pmod{10}$ and $n_2 \equiv 10 \pmod{20}$ then $n_1 n_2 \equiv X \pmod{Y}$

We show how to think about the problem and then give the answer.

$$n_1 \equiv 5 \pmod{10}$$
, so $n_1 = 10k_1 + 5$ for some k_1 .
 $n_2 \equiv 10 \pmod{20}$, so $n_2 = 20k_2 + 10$ for some k_2 .
SO

$$n_1 n_2 = 200k_1k_2 + 100k_1 + 100k_2 + 50$$

AH, so

$$n_1 n_2 = 100(2k_1k_2 + k_1 + k_2) + 50$$

SO

$$n_1 n_2 \equiv 50 \pmod{100}.$$

For all $x, y \in \mathbf{Q} - \{0\}, x\pi + y \notin \mathbf{Q}$.

Let $x, y \in \mathbf{Q} - \{0\}$.

Assume, by way of contradiction, that $x\pi + y \in \mathbb{Q}$.

so there exists $a, b \in \mathbb{N}$ such that

 $x\pi + y = \frac{a}{b}.$

Hence

 $\pi = \left(\frac{a}{b} - y\right)/x.$

Since rationals are closed under $+, -, \div, \times$ we have that π is rational, which is a contradiction.

$$(\forall x, z \in \mathbf{Q})[x < z \rightarrow (\exists y \notin \mathbf{Q})[x < y < z]$$

Let $x, z \in \mathbf{Q}$ with $x < z$. Let $n \in \mathbf{N}$ be such that $\frac{\pi}{n} < z - x$.
Then we have

$$x < x + \frac{\pi}{n} < z$$

By Part 1 $x + \frac{\pi}{n} \notin \mathbb{Q}$.

$(\forall x, z \notin \mathbf{Q}) (\exists y \in \mathbf{Q}) [x < y < z]$

We will assume $x, z \in (0, 1)$. We leave it to the reader to adjust the proof for other cases.

Let $x = 0.x_1x_2\cdots$. Let $z = 0.z_1 z_2 \cdots$. Since x < z there exists a least *i* such that: $x_1 = z_1$ $x_2 = z_2$ $x_{i-1} = z_{i-1}$ $x_i < z_i$. Let $y = x_1 \cdots x_{i-1} z_i.$ This is a finite expansion so $y \in Q$. Clearly x < y < z.

Prove or disprove: $x_1 + y_1 \equiv x_2 + y_2$.

$$x_1 = x_2 + km_x$$

 $y_1 = y_2 + km_y$
ADD these together to get:

$$x_1 + y_1 = x_2 + y_2 + k(m_x + m_y).$$

 $x_1 + y_1 \equiv x_2 + y_2.$

Prove or disprove: $x_1y_1 \equiv x_2y_2$.

 $x_1 = x_2 + km_x$ $y_1 = y_2 + km_y$ MULTIPLY these together to get:

$$x_1y_1 = x_2y_2 + km_xy_1 + km_yx_2 + k^2m_xm_y = x_2y_2 + k(m_xy_1 + m_yx_2 + km_xm_y)$$

So

 $x_1y_1 \equiv x_2y_2.$

Prove or disprove: $x_1^{y_1} \equiv x_2^{y_2}$.

We NEED a counterexample to show that this is FALSE.

$$m = 5.$$

$$x_1 = 2, x_2 = 2, y_1 = 7, y_2 = 8.$$

$$x_1^{x_2} = 2^2 = 4 \equiv 4 \pmod{5}.$$

$$y_1^{y_2} = 7^8 = 5764801 \equiv 1 \pmod{5}.$$

AH- $1 \not\equiv 4 \pmod{5}$.

Honors HW 7

What is the coefficient of x^{2021} in the Taylor Expansion of

$$\frac{1}{x^8 - x^7 - x + 1}$$

Do by hand (NO programming) and show your work.

$$\frac{1}{x^8 - x^7 - x + 1} = \frac{1}{x - 1} \frac{1}{x^7 - 1} = \frac{1}{1 - x} \frac{1}{1 - x^7}$$
$$= (1 + x + x^2 + x^3 + \dots)(1 + x^7 + x^{14} + \dots)$$

The coefficient of x^n is the number of ways to make n cents with 1-coins and 7-coins. We call 1-cent coins **pennies** and 7-cent coins **emilies**.

Let

f(n) be the number of ways to make n cents using pennies and emilies. f(0) = 1 $f(1) = f(2) = \cdots f(6) = 1$. f(7) = 2: either 7 pennies or 1 emily. f(8) = 2: you NEED to use 1 penny. After that you have f(7). More generally, of $n \in \mathbb{N}$ and $0 \le i \le 6$, then f(7n + i) = n + 1. 2021 = 7 * 288 + 5. So f(2021) = 289. So the answer is 289.