Tree Induction
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Suppose we define a three-tree recursively as follows:

e A single node e is a three-tree

o If 77, Ty, T are three-trees, then

is a three-tree

Denote N(T') = the number of nodes in the three-tree T'. Define h(7T') = the height of
the three-tree T' recursively as:

e ( if 7"= a single node
e 1+ max{Ty,Ty,Tg} if T = a node with three children 77, Ty, Tg

Prove that N(T) < % for all three-trees T'.



Proof by induction on n, the stage in which T was formed.
Baes Case: Consider a single node. Then, N(T) =1 and
h(T) =0 so
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Inductive Hypothesis: For some T, N(T) 5



Inductive Step: Let T’ be a three tree with a root and sub trees
T, Tag, The

N(T') =14+ N(T])+ N(T;,) + N(Tg).

h(T’) =1+ max{h(T}),h(Ty,). h(Tg)}.

So,
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By The Inductive Hypothesis,

N(T') = N(T])+ N(Ty,) + N(Tg) +1 <
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