The set of bijections from N to N is uncountable

250H

We know the set of bijections from \mathbb{N} to \mathbb{N} is an infinite set, Let

 this set be named B.We know the set of bijections from \mathbb{N} to \mathbb{N} is an infinite set, Let this set be named B.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We know the set of bijections from \mathbb{N} to \mathbb{N} is an infinite set, Let this set be named B.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_{1}, f_{2}, f_{3}, \ldots$

We know the set of bijections from \mathbb{N} to \mathbb{N} is an infinite set, Let this set be named B.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_{1}, f_{2}, f_{3}, \ldots$

Consider a bijection from \mathbb{N} to \mathbb{N} call it g and the set of Even numbers E.

We know the set of bijections from \mathbb{N} to \mathbb{N} is an infinite set, Let this set be named B.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_{1}, f_{2}, f_{3}, \ldots$

Consider a bijection from \mathbb{N} to \mathbb{N} call it g and the set of Even numbers E.

Let $g(0) \in E-f_{1}(0)$ and
$g(2 n) \in E-f_{1}(0), f_{2}(2), f_{3}(4), f_{1}(6), \ldots, f_{n}(2 n)$.

We know the set of bijections from \mathbb{N} to \mathbb{N} is an infinite set, Let this set be named B.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_{1}, f_{2}, f_{3}, \ldots$

Consider a bijection from \mathbb{N} to \mathbb{N} call it g and the set of Even numbers E.

Let $g(0) \in E-f_{1}(0)$ and
$g(2 n) \in E-f_{1}(0), f_{2}(2), f_{3}(4), f_{1}(6), \ldots, f_{n}(2 n)$.

There is a one to one function from the even number to the even numbers.

Let E^{\prime} be the image of g so $E^{\prime}=g(0), g(2), g(4)$. Reminder, the image of a function is the set of all output values it may produce.

Let E^{\prime} be the image of g so $E^{\prime}=g(0), g(2), g(4)$. Reminder, the image of a function is the set of all output values it may produce.

Let $O=N-E^{\prime}$. This contains at least one odd number and is a subset of \mathbb{N}. Thus it is countable.

Let E^{\prime} be the image of g so $E^{\prime}=g(0), g(2), g(4)$. Reminder, the image of a function is the set of all output values it may produce.

Let $O=N-E^{\prime}$. This contains at least one odd number and is a subset of \mathbb{N}. Thus it is countable.
g does not appear in our original list of bijections as $g(2 n) \neq f_{n}(2 n)$. This is a contradiction. So there is no bijection from \mathbb{N} to B.

