The set of bijections from N to N is uncountable

We know the set of bijections from $\mathbb N$ to $\mathbb N$ is an infinite set, Let

this set be named B.

We know the set of bijections from $\mathbb N$ to $\mathbb N$ is an infinite set, Let

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

this set be named B.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_1, f_2, f_3, ...$

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_1, f_2, f_3, ...$

Consider a bijection from \mathbb{N} to \mathbb{N} call it g and the set of Even numbers E.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_1, f_2, f_3, ...$

Consider a bijection from $\mathbb N$ to $\mathbb N$ call it g and the set of Even numbers E.

Let $g(0) \in E - f_1(0)$ and $g(2n) \in E - f_1(0), f_2(2), f_3(4), f_1(6), ..., f_n(2n)$.

Proof: For the sake of contradiction assume that there is a bijection from \mathbb{N} to B.

We can list out all of the bijective functions in order. So we have $f_1, f_2, f_3, ...$

Consider a bijection from $\mathbb N$ to $\mathbb N$ call it g and the set of Even numbers E.

Let $g(0) \in E - f_1(0)$ and $g(2n) \in E - f_1(0), f_2(2), f_3(4), f_1(6), ..., f_n(2n)$.

There is a one to one function from the even number to the even numbers.

Let E' be the image of g so E' = g(0), g(2), g(4). Reminder, the image of a function is the set of all output values it may produce.

Let O = N - E'. This contains at least one odd number and is a

Let E' be the image of g so E' = g(0), g(2), g(4). Reminder, the image of a function is the set of all output values it may produce.

subset of \mathbb{N} . Thus it is countable.

Let E' be the image of g so E' = g(0), g(2), g(4). Reminder, the image of a function is the set of all output values it may produce.

Let O = N - E'. This contains at least one odd number and is a subset of \mathbb{N} . Thus it is countable.

g does not appear in our original list of bijections as $g(2n) \neq f_n(2n)$. This is a contradiction. So there is no bijection from \mathbb{N} to B.