BILL AND EMILY RECORD LECTURE!!!!

UNTIMED PART OF FINAL IS MONDAY May 10 9:00AM. NO DEAD CAT

FINAL IS MONDAY May 17 8:00PM-10:15PM

FILL OUT COURSE EVALS for ALL YOUR COURSES!!!

Solving One Non-Linear Recurrences

How Many Ways to Parenthesize

Assume that \square is a non-associative operation that is computable (e.g., Subtraction).

How Many Ways to Parenthesize

Assume that \square is a non-associative operation that is computable (e.g., Subtraction).

Someone gives you a, b and wants you to evaluate

$$
a \boxtimes b
$$

How Many Ways to Parenthesize

Assume that \square is a non-associative operation that is computable (e.g., Subtraction).

Someone gives you a, b and wants you to evaluate

$$
a \boxtimes b
$$

There is no problem with doing this.

How Many Ways to Parenthesize

Assume that \square is a non-associative operation that is computable (e.g., Subtraction).

Someone gives you a, b and wants you to evaluate

$$
a \boxtimes b
$$

There is no problem with doing this.
Someone gives you x, y, z and wants you to evaluate

$$
x \boxtimes y \boxtimes z
$$

How Many Ways to Parenthesize

Assume that \square is a non-associative operation that is computable (e.g., Subtraction).

Someone gives you a, b and wants you to evaluate

$$
a \boxtimes b
$$

There is no problem with doing this.
Someone gives you x, y, z and wants you to evaluate

$$
x \boxtimes y \boxtimes z
$$

There is a problem with doing this.

How Many Ways to Parenthesize

Assume that \square is a non-associative operation that is computable (e.g., Subtraction).

Someone gives you a, b and wants you to evaluate

$$
a \boxtimes b
$$

There is no problem with doing this.
Someone gives you x, y, z and wants you to evaluate

$$
x \boxtimes y \boxtimes z
$$

There is a problem with doing this.
They may want

$$
(x \boxtimes y) \boxtimes z \text { or } x \boxtimes(y \boxtimes z)
$$

How Many Ways to Parenthesize

Assume that \square is a non-associative operation that is computable (e.g., Subtraction).

Someone gives you a, b and wants you to evaluate

$$
a \boxtimes b
$$

There is no problem with doing this.
Someone gives you x, y, z and wants you to evaluate

$$
x \boxtimes y \boxtimes z
$$

There is a problem with doing this.
They may want

$$
(x \boxtimes y) \boxtimes z \text { or } x \boxtimes(y \boxtimes z)
$$

Which one? Can't tell. They need to PARENTHESIZE.

How Many ways Can you Parenthesize

x_{1}. One: $\left(x_{1}\right)$.

How Many ways Can you Parenthesize

x_{1}. One: $\left(x_{1}\right)$.
$x_{1} \boxtimes x_{2}$. One: $\left(x_{1} \boxtimes x_{2}\right)$

How Many ways Can you Parenthesize

x_{1}. One: $\left(x_{1}\right)$.
$x_{1} \boxtimes x_{2}$. One: $\left(x_{1} \boxtimes x_{2}\right)$
$x_{1} \boxtimes x_{2} \boxtimes x_{3}$. Two: $\left(x_{1} \boxtimes x_{2}\right) \boxtimes\left(x_{3}\right)$ and $\left(x_{1}\right) \boxtimes\left(x_{2} \boxtimes x_{3}\right)$.

How Many ways Can you Parenthesize

x_{1}. One: $\left(x_{1}\right)$.
$x_{1} \boxtimes x_{2}$. One: $\left(x_{1} \boxtimes x_{2}\right)$
$x_{1} \boxtimes x_{2} \boxtimes x_{3}$. Two: $\left(x_{1} \boxtimes x_{2}\right) \boxtimes\left(x_{3}\right)$ and $\left(x_{1}\right) \boxtimes\left(x_{2} \boxtimes x_{3}\right)$.
$x_{1} \boxtimes x_{2} \boxtimes x_{3} \boxtimes x_{4}$.

How Many ways Can you Parenthesize

x_{1}. One: $\left(x_{1}\right)$.
$x_{1} \boxtimes x_{2}$. One: $\left(x_{1} \boxtimes x_{2}\right)$
$x_{1} \boxtimes x_{2} \boxtimes x_{3}$. Two: $\left(x_{1} \boxtimes x_{2}\right) \boxtimes\left(x_{3}\right)$ and $\left(x_{1}\right) \boxtimes\left(x_{2} \boxtimes x_{3}\right)$.
$x_{1} \boxtimes x_{2} \boxtimes x_{3} \boxtimes x_{4}$.
(1) $\left(x_{1}\right) \boxtimes\left(\right.$ ALL THE WAYS TO DO $\left.x_{2} \boxtimes x_{3} \boxtimes x_{4}\right)$, so 2

How Many ways Can you Parenthesize

x_{1}. One: $\left(x_{1}\right)$.
$x_{1} \boxtimes x_{2}$. One: $\left(x_{1} \boxtimes x_{2}\right)$
$x_{1} \boxtimes x_{2} \boxtimes x_{3}$. Two: $\left(x_{1} \boxtimes x_{2}\right) \boxtimes\left(x_{3}\right)$ and $\left(x_{1}\right) \boxtimes\left(x_{2} \boxtimes x_{3}\right)$.
$x_{1} \boxtimes x_{2} \boxtimes x_{3} \boxtimes x_{4}$.
(1) $\left(x_{1}\right) \boxtimes\left(\right.$ ALL THE WAYS TO DO $\left.x_{2} \boxtimes x_{3} \boxtimes x_{4}\right)$, so 2
(2) $\left(x_{1} \boxtimes x_{2}\right) \boxtimes\left(x_{3} \boxtimes x_{4}\right)$, so 1

How Many ways Can you Parenthesize

x_{1}. One: $\left(x_{1}\right)$.
$x_{1} \boxtimes x_{2}$. One: $\left(x_{1} \boxtimes x_{2}\right)$
$x_{1} \boxtimes x_{2} \boxtimes x_{3}$. Two: $\left(x_{1} \boxtimes x_{2}\right) \boxtimes\left(x_{3}\right)$ and $\left(x_{1}\right) \boxtimes\left(x_{2} \boxtimes x_{3}\right)$.
$x_{1} \boxtimes x_{2} \boxtimes x_{3} \boxtimes x_{4}$.
(1) $\left(x_{1}\right) \boxtimes\left(\right.$ ALL THE WAYS TO DO $\left.x_{2} \boxtimes x_{3} \boxtimes x_{4}\right)$, so 2
(2) $\left(x_{1} \boxtimes x_{2}\right) \boxtimes\left(x_{3} \boxtimes x_{4}\right)$, so 1
(3) (ALL THE WAYS TO DO $\left.\left.x_{1} \boxtimes x_{2} \boxtimes x_{3}\right)\right) ~ \boxtimes\left(x_{4}\right)$, so 2 .

Total: 5.

Can We Make A Recurrence?

Let a_{n} be the number of ways to parenthesize

$$
x_{1} \boxtimes \cdots \boxtimes x_{n}
$$

Can We Make A Recurrence?

Let a_{n} be the number of ways to parenthesize

$$
x_{1} \boxtimes \cdots \boxtimes x_{n} .
$$

For every way to parenthesize there exist an $1 \leq i \leq n$ such that it looks like

$$
\left(x_{1} \boxtimes \cdots \boxtimes x_{i}\right) \boxtimes\left(x_{i+1} \boxtimes \cdots \boxtimes x_{n}\right)
$$

where the left and right sides are also parenthesized.

Can We Make A Recurrence?

Let a_{n} be the number of ways to parenthesize

$$
x_{1} \boxtimes \cdots \boxtimes x_{n}
$$

For every way to parenthesize there exist an $1 \leq i \leq n$ such that it looks like

$$
\left(x_{1} \boxtimes \cdots \boxtimes x_{i}\right) \boxtimes\left(x_{i+1} \boxtimes \cdots \boxtimes x_{n}\right)
$$

where the left and right sides are also parenthesized.
Hence
$a_{1}=1$

$$
(\forall n \geq 2)\left[a_{n}=a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}\right]
$$

We Define $a_{0}=0$ to get a Cleaner Equation

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 .
\end{aligned}
$$

$$
(\forall n \geq 2)\left[a_{n}=a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right]
$$

We Define $a_{0}=0$ to get a Cleaner Equation

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 .
\end{aligned}
$$

$$
(\forall n \geq 2)\left[a_{n}=a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right]
$$

How to solve?

We Define $a_{0}=0$ to get a Cleaner Equation

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 .
\end{aligned}
$$

$$
(\forall n \geq 2)\left[a_{n}=a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right]
$$

How to solve?
Define

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{i}
$$

We Define $a_{0}=0$ to get a Cleaner Equation

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 .
\end{aligned}
$$

$$
(\forall n \geq 2)\left[a_{n}=a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right]
$$

How to solve?
Define

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{i}
$$

Goal Want $A(x)$ as a function we can take the Taylor Series of to recover a_{n} as a formula.

We Define $a_{0}=0$ to get a Cleaner Equation

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 .
\end{aligned}
$$

$$
(\forall n \geq 2)\left[a_{n}=a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right]
$$

How to solve?
Define

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{i}
$$

Goal Want $A(x)$ as a function we can take the Taylor Series of to recover a_{n} as a formula. $A(x)$ is called the Generating Function of the sequence a_{0}, a_{1}, \ldots.

Use the Recurrence and the Gen Function

The recurrence only works when $n \geq 2$. Hence we look at

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
$$

Use the Recurrence and the Gen Function

The recurrence only works when $n \geq 2$. Hence we look at

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
$$

We get both sides to be a function of $A(x)$.

Use the Recurrence and the Gen Function

The recurrence only works when $n \geq 2$. Hence we look at

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
$$

We get both sides to be a function of $A(x)$.

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-a_{1} x^{1}-a_{0} x^{0}=A(x)-a_{1} x-a_{0}=A(x)-x
$$

Use the Recurrence and the Gen Function

The recurrence only works when $n \geq 2$. Hence we look at

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
$$

We get both sides to be a function of $A(x)$.

$$
\begin{gathered}
\sum_{n=2}^{\infty} a_{n} x^{n}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-a_{1} x^{1}-a_{0} x^{0}=A(x)-a_{1} x-a_{0}=A(x)-x \\
\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
\end{gathered}
$$

This looks a little like $A(x)^{2}$.

Use the Recurrence and the Gen Function

The recurrence only works when $n \geq 2$. Hence we look at

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
$$

We get both sides to be a function of $A(x)$.

$$
\begin{gathered}
\sum_{n=2}^{\infty} a_{n} x^{n}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-a_{1} x^{1}-a_{0} x^{0}=A(x)-a_{1} x-a_{0}=A(x)-x \\
\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
\end{gathered}
$$

This looks a little like $A(x)^{2}$.
Next Slide.

The Right Hand Side

$$
\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right) x^{n}
$$

The Right Hand Side

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right) x^{n} \\
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
\end{gathered}
$$

The Right Hand Side

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right) x^{n} \\
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
A(x)^{2}=\sum_{n=0}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n}
\end{gathered}
$$

The Right Hand Side

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+a_{2} a_{n-2}+\cdots+a_{n-1} a_{1}+a_{n} a_{0}\right) x^{n} \\
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
A(x)^{2}=\sum_{n=0}^{\infty}\left(a_{0} a_{n}+a_{1} a_{n-1}+\cdots+a_{n} a_{0}\right) x^{n} \\
\sum_{n=2}^{\infty}\left(a_{0} a_{n}+\cdots+a_{n} a_{0}\right) x^{n}=A(x)^{2}-\left(a_{0} a_{1}+a_{1} a_{0}\right) x^{1}-a_{0}^{2} x^{0}=A(x)^{2}
\end{gathered}
$$

Equate LHS and RHS

$$
A(x)-x=A(x)^{2}
$$

Equate LHS and RHS

$$
A(x)-x=A(x)^{2}
$$

$$
A(x)^{2}-A(x)+x=0
$$

Equate LHS and RHS

$$
A(x)-x=A(x)^{2}
$$

$$
A(x)^{2}-A(x)+x=0
$$

$$
A(x)=\frac{1 \pm \sqrt{1-4 x}}{2}
$$

Do we Use + or - ?

The Taylor Series for $\sqrt{1-4 x}$ is:

Do we Use + or - ?

The Taylor Series for $\sqrt{1-4 x}$ is:

$$
\sqrt{1-4 x}=\sum_{n=0}^{\infty}-\frac{2}{n}\binom{2 n-2}{n-1} x^{n}
$$

Do we Use + or - ?

The Taylor Series for $\sqrt{1-4 x}$ is:

$$
\sqrt{1-4 x}=\sum_{n=0}^{\infty}-\frac{2}{n}\binom{2 n-2}{n-1} x^{n}
$$

The Taylor series has neg coeffs but we need pos coeffs. We take

$$
-\sqrt{1-4 x}=\sum_{n=0}^{\infty} \frac{2}{n}\binom{2 n-2}{n-1} x^{n}
$$

The Final Answer

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

The Final Answer

$$
\begin{gathered}
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
A(x)=\frac{1-\sqrt{1-4 x}}{2}
\end{gathered}
$$

The Final Answer

$$
\begin{gathered}
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
A(x)=\frac{1-\sqrt{1-4 x}}{2}
\end{gathered}
$$

Algebra shows:

$$
\frac{1-\sqrt{1-4 x}}{2}=\sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1}
$$

The Final Answer

$$
\begin{gathered}
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
A(x)=\frac{1-\sqrt{1-4 x}}{2}
\end{gathered}
$$

Algebra shows:

$$
\frac{1-\sqrt{1-4 x}}{2}=\sum_{n=1}^{\infty} \frac{1}{n}\binom{2 n-2}{n-1} .
$$

SO we have our answer!

$$
a_{n}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

BILL AND EMILY RECORD LECTURE!!!!

UNTIMED PART OF FINAL IS MONDAY May 10 9:00AM. NO DEAD CAT

FINAL IS MONDAY May 17 8:00PM-10:15PM

FILL OUT COURSE EVALS for ALL YOUR COURSES!!!

