Combinatorics

250H

Prove: $2^n = C(n, 0) + C(n, 1) + ... + C(n, n)$

Prove: $2^n = C(n, 0) + C(n, 1) + ... + C(n, n)$

Proof (1): The number of subsets of $\{1, 2, ..., n\}$ is 2^n . From that set we can choose 0 elements or 1 elements or ... or n elements.

Thus,
$$2^n = C(n, 0) + C(n, 1) + ... + C(n, n)$$
. **

Prove: $2^n = C(n, 0) + C(n, 1) + ... + C(n, n)$

Proof (1): The number of subsets of $\{1, 2, ..., n\}$ is 2^n . From that set we can choose 0 elements or 1 elements or ... or n elements.

Thus,
$$2^n = C(n, 0) + C(n, 1) + ... + C(n, n)$$
. **

Proof (2): Consider the identity, $(x + y)^n = \sum C(n, i) x^i y^{n-i}$

Choose
$$x = y = 1$$
. Now we have $(1 + 1)^n = \sum C(n, i) 1^i 1^{n-i}$ or $2^n = \sum C(n, i)$.

Thus,
$$2^n = C(n, 0) + C(n, 1) + ... + C(n, n)$$
. **

Option 1: Lets ignore gender. Then we have a total of 2n people.

So we have C(2n, n) ways.

Option 1: Lets ignore gender. Then we have a total of 2n people.

So we have C(2n, n) ways.

Option 2: We can pick 0 girls and n boys, 1 girl and n-1 boys, ..., n girls and n-1 boys.

So we have $\Sigma [C(n, i)]^2$ ways.

Option 1: Lets ignore gender. Then we have a total of 2n people.

So we have C(2n, n) ways.

Option 2: We can pick 0 girls and n boys, 1 girl and n-1 boys, ..., n girls and 0 boys.

So we have $\Sigma [C(n, i)]^2$ ways.

This is another identity: $\sum [C(n, i)]^2 = C(2n, n)$

Combinatorial Identities

1.
$$(x+y)^n = \sum C(n, i) x^i y^{n-i}$$

2.
$$\Sigma [C(n, i)]^2 = C(2n, n)$$