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Introductory Example

• We already know that 

 

𝑖=1

𝑛

𝑖 =
𝑛(𝑛 + 1)

2
=
𝑛2

2
+
𝑛

2

• But how? Who told us this?

• This is not how math works; we usually do not know the answer 
ahead of time!



Making a Good Guess with Calculus

• Calculus tells us that (discrete) sums are approximations of 
(continuous) integrals.

• Then, we can observe that:

 

𝑖=1

𝑛

𝑖 ≈ 
1

𝑛

𝑥 𝑑𝑥 =
1

2
𝑛2 + 𝑐, 𝑐 ∈ ℝ

• So we know that the sum ought to be some quadratic function of 𝑛.



Making a Good Guess with CS

• Another way to guess the quadratic form would be with plotting!

• Suppose 𝑓 𝑛 =  𝑖=1
𝑛 𝑖. Then:

• 𝑓 0 =  𝑖=1
0 𝑖 = 0

• 𝑓 1 =  𝑖=1
1 𝑖 = 1

• 𝑓 2 =  𝑖=1
2 𝑖 = 1 + 2 = 3

• 𝑓 3 =  𝑖=1
3 𝑖 = 1 + 2 + 3 = 6

• …

• 𝑓 2 =  𝑖=1
30 𝑖 = 1 + 2 +⋯+ 30 = 465

• We can then fit a curve and see the quadratic curve by ourselves!



Making a Good Guess

• We saw that the sum is some quadratic polynomial. This is all we 
know!

• So  𝑖=1
𝑛 𝑖 is some 𝑝𝑜𝑙𝑦(𝑛) with degree 2, i.e

 

𝑖=1

𝑛

𝑖 = 𝐴𝑛2 + 𝐵𝑛 + 𝐶, 𝐴, 𝐵, 𝐶 ∈ ℝ

• How to determine A, B, and C?



General Logic

• Solve as if you had an inductive proof (so IB, IH, IS)

• For every step, we will establish conditions on A, B,C such that the 
relevant step is correct.
• Contrast this with directly proving that every step is correct.



Constant 𝐶

• IB: LHS is  𝑖=1
0 𝑖 = 0. For RHS to be equal to LHS we 

need:

𝐴𝑛2 + 𝐵𝑛 + 𝐶 = 0 ⇒ 𝐶 = 0

• So we already know that 𝐶 = 0.



Co-efficients 𝐴, 𝐵

• IH: Assume that the proposition holds for 𝑛 ≥ 0. Then:

 

𝑖=1

𝑛

𝑖 = 𝐴𝑛2 + 𝐵𝑛

• IS: We want to prove that

 

𝑖=1

𝑛

𝑖 = 𝐴𝑛2 + 𝐵𝑛 ⇒  

𝑖=1

𝑛+1

𝑖 = 𝐴(𝑛 + 1)2+𝐵(𝑛 + 1)



Co-efficients 𝐴, 𝐵

• IH: Assume that the proposition holds for 𝑛 ≥ 0. Then:

 

𝑖=1

𝑛

𝑖 = 𝐴𝑛2 + 𝐵𝑛

• IS: We want to prove that

 

𝑖=1

𝑛

𝑖 = 𝐴𝑛2 + 𝐵𝑛 ⇒  

𝑖=1

𝑛+1

𝑖 = 𝐴(𝑛 + 1)2+𝐵(𝑛 + 1)

𝑃(𝑛 + 1)𝑃(𝑛)

𝑃(𝑛)



Co-efficients 𝐴, 𝐵

 

𝑖=1

𝑛+1

𝑖 = 

𝑖=1

𝑛

𝑖 + 𝑛 + 1 =𝐴𝑛2 + 𝐵𝑛 + (𝑛 + 1)

• We have to equate this to 𝐴(𝑛 + 1)2+𝐵(𝑛 + 1), since this is what 
we’re trying to prove:

𝐴𝑛2 + 𝐵𝑛 + 𝑛 + 1 = 𝐴 𝑛 + 1 2 + 𝐵 𝑛 + 1 ⇒
𝐴𝑛2 + 𝐵𝑛 + 𝑛 + 1 = 𝐴𝑛2 + 2𝐴𝑛 + 𝐴 + 𝐵𝑛 + 𝐵 ⇒

𝑛 + 1 = 2𝐴𝑛 + (𝐴 + 𝐵)

IH



Co-efficients 𝐴, 𝐵

𝑛 + 1 = 2𝐴𝑛 + (𝐴 + 𝐵)

• This is an equality between polynomials of 𝑘, so equating the co-
efficients yields:

1 = 2𝐴
𝐴 + 𝐵 = 1



Co-efficients 𝐴, 𝐵

𝑛 + 1 = 2𝐴𝑛 + (𝐴 + 𝐵)

• This is an equality between polynomials in 𝑛, so equating the co-
efficients yields:

1 = 2𝐴
𝐴 + 𝐵 = 1

• Note: The IS did not end up with TRUE, but with conditions on A,B for 
it to be TRUE.



All Our Constraints

1. 𝐶 = 0

2. A+B = 1

3. 2 ⋅ 𝐴 = 1

• Algebra yields 𝐴 = 𝐵 =  1 2 , so:

 

𝑖=0

𝑛

𝑖 =
1

2
𝑛2 +

1

2
𝑛 + 0 =

𝑛(𝑛 + 1)

2



What if Our Guess is Wrong (Over)?

1. Suppose we guess 

 

𝑖=1

𝑛

𝑖 = 𝐴 ⋅ 𝑛3 + 𝐵 ⋅ 𝑛2 + 𝐶 ⋅ 𝑛 + 𝐷

2. This still works, we will just find 𝐴 = 0 (try it at home!)



What if Our Guess is Wrong (Under)?

1. Suppose we guess 

 

𝑖=1

𝑛

𝑖 = 𝐴 ⋅ 𝑛 + 𝐵

2. This does not work (infeasible equation), no 𝐴, 𝐵 ∈ ℝ will satisfy 
the constraints (try it at home!)



Another Example (with Bounds!)

• Let 𝑎 be a sequence defined as follows:

𝑎𝑛 =  
2, 𝑛 = 0
50, 𝑛 = 1
10𝑎𝑛−1 + 3𝑎𝑛−2, 𝑛 ≥ 2

• Task: Find an upper bound for 𝑎𝑛.



Another Example (with Bounds!)

• Let 𝑎 be a sequence defined as follows:

𝑎𝑛 =  
2, 𝑛 = 0
50, 𝑛 = 1
10𝑎𝑛−1 + 3𝑎𝑛−2, 𝑛 ≥ 2

• Task: Find an upper bound for 𝑎𝑛.

• What kind of inductive structure am I expecting?

Weak Strong



Another Example (with Bounds!)

• Let 𝑎 be a sequence defined as follows:

𝑎𝑛 =  
2, 𝑛 = 0
50, 𝑛 = 1
10𝑎𝑛−1 + 3𝑎𝑛−2, 𝑛 ≥ 2

• Task: Find an upper bound for 𝑎𝑛.

• What kind of inductive structure am I expecting?

Weak Strong

An inductive base with > 1 
elements and a recursive rule 
with references to two prior 
terms hints towards strong 
induction…



Key Step

𝑎𝑛 =  
2, 𝑛 = 0
50, 𝑛 = 1
10𝑎𝑛−1 + 3𝑎𝑛−2, 𝑛 ≥ 2

• Because of our experience with sequences like Fibonacci, Tribonacci
that all have this form, we suspect:

𝑎𝑛 ≤ 𝐶 ⋅ 𝐷𝑛,    𝐶, 𝐷 ∈ ℝ



Constraints on C

• IB: 
• 𝑎0 ≤ 𝐶 ⋅ 𝐷0 ⇔ 2 ≤ 𝐶

• 𝑎1 ≤ 𝐶 ⋅ 𝐷1 ⇔ 50 ≤ 𝐶 ⋅ 𝐷



Inductive Hypothesis

• IB: 
• 𝑎0 ≤ 𝐶 ⋅ 𝐷0 ⇔ 2 ≤ 𝐶

• 𝑎1 ≤ 𝐶 ⋅ 𝐷1 ⇔ 50 ≤ 𝐶 ⋅ 𝐷

• IH: Let 𝑛 ≥ 1. Assume that ∀𝑖 ∈ 0, 1, 2, …𝑛 [𝑎𝑖 ≤ 𝐶 ⋅ 𝐷𝑖 ]



Inductive Step

• IB: 
• 𝑎0 ≤ 𝐶 ⋅ 𝐷0 ⇔ 2 ≤ 𝐶

• 𝑎1 ≤ 𝐶 ⋅ 𝐷1 ⇔ 50 ≤ 𝐶 ⋅ 𝐷

• IH: Let 𝑛 ≥ 1. Assume that ∀𝑖 ∈ {0, 1, 2, …𝑛}, 𝑎𝑖 ≤ 𝐶 ⋅ 𝐷𝑖 .

• IS:
∀𝑖 ∈ 0, 1, 2, …𝑛 [𝑎𝑖 ≤ 𝐶 ⋅ 𝐷𝑖] ⇒ 𝑎𝑛+1 ≤ 𝐶 ⋅ 𝐷𝑛+1



Inductive Step

• IS:
∀𝑖 ∈ 0, 1, 2, …𝑛 [𝑎𝑖 ≤ 𝐶 ⋅ 𝐷𝑖] ⇒ 𝑎𝑛+1 ≤ 𝐶 ⋅ 𝐷𝑛+1

• From the definition of 𝑎, we have 𝑎𝑛+1 = 10𝑎𝑛 + 3𝑎𝑛−1. Therefore,

𝑎𝑛+1 = 10𝑎𝑛 + 3𝑎𝑛−1 ≤ 10 ⋅ 𝐶 ⋅ 𝐷𝑛 + 3 ⋅ 𝐶 ⋅ 𝐷𝑛−1 (By IH)

• Want 10 ⋅ 𝐶 ⋅ 𝐷𝑛 + 3 ⋅ 𝐶 ⋅ 𝐷𝑛−1 ≤ 𝐶 ⋅ 𝐷𝑛+1



Inductive Step

• Want
10 ⋅ 𝐶 ⋅ 𝐷𝑛 + 3 ⋅ 𝐶 ⋅ 𝐷𝑛−1 ≤ 𝐶 ⋅ 𝐷𝑛+1 ⇔
10 ⋅ 𝐷𝑛 + 3 ⋅ 𝐷𝑛−1 ≤ 𝐷𝑛+1

• Dividing both sides by 𝐷𝑛−1 yields:

10𝐷 + 3 ≤ 𝐷2

𝐶 > 0 so we can divide by 𝐶
and the inequality doesn’t 
change direction…



All Constraints

1. 2 ≤ 𝐶

2. 50 ≤ 𝐶 ⋅ 𝐷

3. 10𝐷 + 3 ≤ 𝐷2

• We deal with constraint 3 first.
• Smallest 𝐷 ∈ ℝ>0 that satisfies it: 



All Constraints

1. 2 ≤ 𝐶

2. 50 ≤ 𝐶 ⋅ 𝐷

3. 10𝐷 + 3 ≤ 𝐷2

• We deal with constraint 3 first.
• Smallest 𝐷 ∈ ℝ>0 that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON’T 

WANT TO SPEND TIME SOLVING 𝐷2 − 10𝐷 − 3 ≥ 0

• Smallest 𝐷 ∈ ℕ that satisfies it: 𝐷 = ⋯? ? ? (FIND ONE REAL QUICK, PLZ) 



All Constraints

1. 2 ≤ 𝐶

2. 50 ≤ 𝐶 ⋅ 𝐷

3. 10𝐷 + 3 ≤ 𝐷2

• We deal with constraint 3 first.
• Smallest 𝐷 ∈ ℝ>0 that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON’T 

WANT TO SPEND TIME SOLVING 𝐷2 − 10𝐷 − 3 ≥ 0

• Smallest 𝐷 ∈ ℕ that satisfies it: 𝐷 = ⋯? ? ? (FIND ONE REAL QUICK, PLZ) 

𝐷 = 11 works! 



All Constraints

1. 2 ≤ 𝐶

2. 50 ≤ 𝐶 ⋅ 𝐷

3. 10𝐷 + 3 ≤ 𝐷2

• Constraint (3) satisfied when 𝐷 ≥ 11 (just discussed)

• Since we want to find tight bounds for 𝑎𝑛, to minimize C, we select 

𝐷 = 11 and from constraint (2) we have: 50 ≤ 𝐶 ⋅ 11 ⇔ 𝐶 ≥ 4.55 ⇒
𝐶𝑚𝑖𝑛 = 4.55



All Constraints

1. 2 ≤ 𝐶

2. 50 ≤ 𝐶 ⋅ 𝐷

3. 10𝐷 + 3 ≤ 𝐷2

• Constraint (3) satisfied when 𝐷 ≥ 11 (just discussed)

• Since we want to find tight bounds for 𝑎𝑛, to minimize C, we select 

𝐷 = 11 and from constraint (2) we have: 50 ≤ 𝐶 ⋅ 11 ⇔ 𝐶 ≥ 4.55 ⇒
𝐶𝑚𝑖𝑛 = 4.55

• Conclusion:
𝑎𝑛 ≤ 4.55 ⋅ 11𝑛



Work on This

• A slight modification on the previous sequence:

𝑎𝑛 =  
10, 𝑛 = 0
50, 𝑛 = 1
10𝑎𝑛−1 + 3𝑎𝑛−2, 𝑛 ≥ 2

• Assuming that we still suspect 𝑎𝑛 ≤ 𝐶 ⋅ 𝐷𝑛, you solve for the new 
𝐶, 𝐷 right now!



Work on This

• A slight modification on the previous sequence:

𝑎𝑛 =  
10, 𝑛 = 0
50, 𝑛 = 1
10𝑎𝑛−1 + 3𝑎𝑛−2, 𝑛 ≥ 2

• Assuming that we still suspect 𝑎𝑛 ≤ 𝐶 ⋅ 𝐷𝑛, solve for the new 𝐶, 𝐷!

• Your solution ought to be 𝐶 = 10, 𝐷 = 11. What do you observe?



Coin Problem

• In Celestia, there are only 7𝑐 and 10𝑐 coins. 

• We want to find the least monetary amount payable exclusively with 
such coins!

• In quantifiers (all quantifications assumed over ℕ)

∀𝑛 ≥ 𝐴 ∃𝑛1, 𝑛2 [𝑛 = 7𝑛1 + 10𝑛2]

• Goal: Find constraints on A via constructive induction!

• IB: ???

https://en.wikipedia.org/wiki/Nation_of_Celestial_Space


Coin Problem

• In Celestia, there are only 7𝑐 and 10𝑐 coins. 

• We want to find the least monetary amount payable exclusively with 
such coins!

• In quantifiers (all quantifications assumed over ℕ)

∀𝑛 ≥ 𝐴 ∃𝑛1, 𝑛2 [𝑛 = 7𝑛1 + 10𝑛2]

• Goal: Find constraints on A via constructive induction!

• IB: Defer for later!!!

https://en.wikipedia.org/wiki/Nation_of_Celestial_Space


Coin Problem

• In Celestia, there are only 7𝑐 and 10𝑐 coins. 

• We want to find the least monetary amount payable exclusively with such 
coins!

• In quantifiers (all quantifications assumed over ℕ)

∀𝑛 ≥ 𝐴 ∃𝑛1, 𝑛2 [𝑛 = 7𝑛1 + 10𝑛2]

• Goal: Find constraints on A via constructive induction!

• IB: Defer for later!!!

• IH: Assume that for 𝑛 ≥ 𝐴, ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′

https://en.wikipedia.org/wiki/Nation_of_Celestial_Space


Coin Problem (IS)

• From the IH we have ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′

• How can we add/remove coins to get another cent?



Coin Problem (IS)

• From the IH we have ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′

• How can we add/remove coins to get another cent?
1. 𝑛2

′ ≥ 2 : Remove two 10𝑐 coins, add three 7𝑐 coins

𝑛 + 1 = 7𝑛1
′ + 10𝑛2

′ + 1 = 7𝑛1
′ + 10𝑛2

′ + 21 − 20
= 7 𝑛1

′ + 3 + 10(𝑛2
′−2)



Coin Problem (IS)

• From the IH we have ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′

• How can we add/remove coins to get another cent?
1. 𝑛2

′ ≥ 2 : Remove two 10𝑐 coins, add three 7𝑐 coins

𝑛 + 1 = 7𝑛1
′ + 10𝑛2

′ + 1 = 7𝑛1
′ + 10𝑛2

′ + 21 − 20
= 7 𝑛1

′ + 3 + 10(𝑛2
′−2)

2. 𝑛1
′ ≥ 7: Remove seven 7𝑐 coins, add five 10𝑐 coins 

𝑛 + 1 = 7𝑛1
′ + 10𝑛2

′ + 1 = 7𝑛1
′ + 10𝑛2

′ + 50 − 49
= 7 𝑛1

′ − 7 + 10(𝑛2
′+5)



Coin Problem (IS)

3. 𝑛1
′ ≤ 6 ∧ (𝑛2

′ ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑛 ≤ 52.



RECAP

• We’ve shown that if 𝑛 ≥ 53, then 

( ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′ ) ⇒ ( ∃𝑛1
′′, 𝑛2

′′ 𝑛 + 1 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′ )

• For which 𝑛 do we know that ( ∃𝑎, 𝑏 ∈ ℕ 𝑛 = 7𝑎 + 10𝑏 ?

∀𝑛 ≥ 52 ∀𝑛 ≥ 53
Something 

Else



RECAP

• We’ve shown that if 𝑛 ≥ 53, then 

( ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′ ) ⇒ ( ∃𝑛1
′′, 𝑛2

′′ 𝑛 + 1 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′ )

• For which 𝑛 do we know that ( ∃𝑎, 𝑏 ∈ ℕ 𝑛 = 7𝑎 + 10𝑏 ?

∀𝑛 ≥ 52 ∀𝑛 ≥ 53
Something 

Else

Only the implication holds! We don’t have 
any hard truth (base) about whether it 
EVER holds.



Coin Problem (IS)

3. 𝑛1
′ ≤ 6 ∧ (𝑛2

′ ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑛 ≤ 52.

• Condition: 𝐴 ≥ 53.

• Now I need a base case.

• ∃? 𝑛1
′′, 𝑛2

′′ ∈ ℕ [53 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′]

Yes 
(which?)

No



Coin Problem (IS)

3. 𝑛1
′ ≤ 6 ∧ (𝑛2

′ ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑘 ≤ 52.

• Condition: 𝐴 ≥ 53.

• Now I need a base case.

• ∃? 𝑛1
′′, 𝑛2

′′ ∈ ℕ [53 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′]

Yes 
(which?)

No

Prove it at home (use cases)



Coin Problem (IS)

3. 𝑛1
′ ≤ 6 ∧ (𝑛2

′ ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑘 ≤ 52.

• Condition: 𝐴 ≥ 53.

• Now I need a base case.

• ∃? 𝑛1
′′, 𝑛2

′′ ∈ ℕ [53 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′]

• ∃? 𝑛1
′′, 𝑛2

′′ ∈ ℕ [54 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′]

Yes 
(which?)

No



Coin Problem (IS)

3. 𝑛1
′ ≤ 6 ∧ (𝑛2

′ ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑘 ≤ 52.

• Condition: 𝐴 ≥ 53.

• Now I need a base case.

• ∃? 𝑛1
′′, 𝑛2

′′ ∈ ℕ [53 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′]

• ∃? 𝑛1
′′, 𝑛2

′′ ∈ ℕ [54 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′]

Yes 
(which?)

No

𝑛1
′′ = 2,

𝑛2
′′ = 4



RECAP

• We’ve shown that if 𝑛 ≥ 53, then 

( ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′ ) ⇒ ( ∃𝑛1
′′, 𝑛2

′′ 𝑛 + 1 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′ )

• We’ve also shown that ∃𝑟1, 𝑟2 ∈ ℕ 54 = 7𝑟1 + 10𝑟2
(𝑟1 = 2, 𝑟2 = 4)



RECAP

• We’ve shown that if 𝑛 ≥ 53, then 

( ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′ ) ⇒ ( ∃𝑛1
′′, 𝑛2

′′ 𝑛 + 1 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′ )

• We’ve also shown that ∃𝑟1, 𝑟2 ∈ ℕ 54 = 7𝑟1 + 10𝑟2
(𝑟1 = 2, 𝑟2 = 4)

• What do we know NOW about the theorem?

True for 
𝑛 ≥ 52

True for 
𝑛 ≥ 53

Nothing
True for 
𝑛 ≥ 54



RECAP

• We’ve shown that if 𝑛 ≥ 53, then 

( ∃𝑛1
′ , 𝑛2

′ 𝑛 = 7 ⋅ 𝑛1
′ + 10𝑛2

′ ) ⇒ ( ∃𝑛1
′′, 𝑛2

′′ 𝑛 + 1 = 7 ⋅ 𝑛1
′′ + 10𝑛2

′′ )

• We’ve also shown that ∃𝑟1, 𝑟2 ∈ ℕ 54 = 7𝑟1 + 10𝑟2
(𝑟1 = 2, 𝑟2 = 4)

• What do we know NOW about the theorem?

Nothing
True for 
𝑛 ≥ 52

True for 
𝑛 ≥ 53

True for 
𝑛 ≥ 54



What is A?

• Recall the theorem (all quantifiers over ℕ ):

∀𝑛 ≥ 𝐴 ∃𝑛1, 𝑛2 [𝑛 = 7𝑛1 + 10𝑛2]

• Our goal was to find 𝐴.

• 𝐴 = 54 works, and is optimal, since 𝐴 = 53 does not work.



Question

• Is the theorem true for any 𝑛 ≤ 53?

Yes
(which?)

No
(Why?)



Question

• Is the theorem true for any 𝑛 ≤ 53?

0, 7, 10, 14, 17, 20, 21, 24, 27, 28, 30, 31, 34, 35, 37, 38, 40,
41, 42, 44, 45,47, 48, 49, 50, 51, 52

• Note that there are gaps between these integers!

Yes
(which?)

No
(Why?)



General Scenarios

• Once we establish
∀𝑛 ≥ 𝑛0 [𝑃 𝑛 ⇒ 𝑃(𝑛 + 1)]

we have two cases:

1. 𝑃(𝑛0) is true. Then, we have to go back and find the first 𝑎 ∈ ℕ for 
which 𝑃(𝑛0 − 𝑎) is false. This means that 𝐴 = 𝑛0 − 𝑎 + 1



General Scenarios

• Once we establish
∀𝑛 ≥ 𝑛0 [𝑃 𝑛 ⇒ 𝑃(𝑛 + 1)]

we have two cases:

1. 𝑃(𝑛0) is true. Then, we have to go back and find the first 𝑎 ∈ ℕ for 
which 𝑃(𝑛0 − 𝑎) is false. This means that 𝐴 = 𝑛0 − 𝑎 + 1

𝑛0𝑛0 − 1 𝑛0 + 1… …𝑛0−a 𝑛0 + 2

Land of the implication
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First element smaller than 
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hold



General Scenarios

• Once we establish
∀𝑛 ≥ 𝑛0 [𝑃 𝑛 ⇒ 𝑃(𝑛 + 1)]

we have two cases:

1. 𝑃(𝑛0) is true. Then, we have to go back and find the first 𝑎 ∈ ℕ for 
which 𝑃(𝑛0 − 𝑎) is false. This means that 𝐴 = 𝑛0 − 𝑎 + 1

𝑛0𝑛0 − 1 𝑛0 + 1
… …𝑛0−a 𝑛0 + 2

Land of the implication

𝑛0−a+1

Integers for which we’ve determined  that 𝑃(⋅) holdsNew base case (A)

First element smaller than 
𝑛0 for which 𝑃does not  
hold



General Scenarios

• Once we establish
∀𝑛 ≥ 𝑛0 [𝑃 𝑛 ⇒ 𝑃(𝑛 + 1)]

we have a second case:

2. 𝑃(𝑛0) is false. Then, we have to go forward and find the first 𝑎 ∈ ℕ
for which 𝑃(𝑛0 + 𝑎) is true. This means that 𝐴 = 𝑛0 + 𝑎

𝑛0𝑛0 − 1 𝑛0 + 1 …

Land of the implication

𝑛0 + 𝑎 𝑛0 + 𝑎 + 1



Case #2

2. 𝑃(𝑛0) is false. Then, we have to go forward and find the first 𝑎 ∈ ℕ
for which 𝑃(𝑛0 + 𝑎) is true.
a) We find 𝑎 such that 𝑃(𝑛0 + 𝑎) is true.

𝑛0𝑛0 − 1 𝑛0 + 1 …
Land of the implication

𝑛0 + 𝑎 − 1 𝑛0 + 𝑎

Integers for which 𝑃(⋅) holds

New base case (A)



Case #2 in Detail

2. 𝑃(𝑛0) is false. Then, we have to go forward and find the first 𝑎 ∈ ℕ
for which 𝑃(𝑛0 + 𝑎) is true.
a) We find 𝑎 such that 𝑃(𝑛0 + 𝑎) is true.

𝑛0𝑛0 − 1 𝑛0 + 1 …
Land of the implication

𝑛0 + 𝑎 − 1 𝑛0 + 𝑎

Integers for which 𝑃(⋅) holds

New base case (A)



Case #2 in Detail

2. 𝑃(𝑛0) is false. Then, we have to go forward and find the first 𝑎 ∈ ℕ
for which 𝑃(𝑛0 + 𝑎) is true.
a) We find 𝑎 such that 𝑃(𝑛0 + 𝑎) is true.

b) We cannot find 𝑎 (after, say, a trillion iterations) where 𝑃(𝑛0 + 𝑎) is true.

𝑛0𝑛0 − 1 𝑛0 + 1 …
Land of the implication

𝑛0 + 𝑎 − 1 𝑛0 + 𝑎

New base case (A)
Integers for which 𝑃(⋅) holds



Case #2 in Detail

2. 𝑃(𝑛0) is false. Then, we have to go forward and find the first 𝑎 ∈ ℕ
for which 𝑃(𝑛0 + 𝑎) is true.
a) We find 𝑎 such that 𝑃(𝑛0 + 𝑎) is true.

b) We cannot find 𝑎 (after, say, a trillion iterations) where 𝑃(𝑛0 + 𝑎) is true.

• What could this mean?

𝑛0𝑛0 − 1 𝑛0 + 1 …
Land of the implication

𝑛0 + 𝑎 − 1 𝑛0 + 𝑎

New base case (A)
Integers for which 𝑃(⋅) holds



Case #2 in Detail

2. 𝑃(𝑛0) is false. Then, we have to go forward and find the first 𝑎 ∈ ℕ
for which 𝑃(𝑛0 + 𝑎) is true.
a) We find 𝑎 such that 𝑃(𝑛0 + 𝑎) is true.

b) We cannot find 𝑎 (after, say, a trillion iterations) where 𝑃(𝑛0 + 𝑎) is true.

• What could this mean?

𝑛0𝑛0 − 1 𝑛0 + 1 …
Land of the implication

𝑛0 + 𝑎 − 1 𝑛0 + 𝑎

New base case (A)
Integers for which 𝑃(⋅) holds

Either we have to try harder….



Case #2 in Detail

2. 𝑃(𝑛0) is false. Then, we have to go forward and find the first 𝑎 ∈ ℕ
for which 𝑃(𝑛0 + 𝑎) is true.
a) We find 𝑎 such that 𝑃(𝑛0 + 𝑎) is true.

b) We cannot find 𝑎 (after, say, a trillion iterations) where 𝑃(𝑛0 + 𝑎) is true.

• What could this mean?

𝑛0𝑛0 − 1 𝑛0 + 1 …
Land of the implication

𝑛0 + 𝑎 − 1 𝑛0 + 𝑎

New base case (A)
Integers for which 𝑃(⋅) holds

Or the theorem is bogus!



And Here’s Another

• Let 𝑎 be a sequence defined as follows:

𝑎𝑛 =  

0, 𝑛 = 0
2, 𝑛 = 1
𝑎 𝑛
2
+ 𝑎 𝑛

4
+ 5𝑛, 𝑛 ≥ 2

• Then, find 𝐶 ∈ ℝ such that 
∀𝑛 ∈ ℕ [𝑎𝑛 ≤ 𝐶 ⋅ 𝑛]



And Here’s Another

• Let 𝑎 be a sequence defined as follows:

𝑎𝑛 =  

0, 𝑛 = 0
2, 𝑛 = 1
𝑎 𝑛
2
+ 𝑎 𝑛

4
+ 5𝑛, 𝑛 ≥ 2

• Then, find 𝐶 ∈ ℝ such that 
∀𝑛 ∈ ℕ [𝑎𝑛 ≤ 𝐶 ⋅ 𝑛] Recursions like this have 

linear upper bounds



And Here’s Another

• Let 𝑎 be a sequence defined as follows:

𝑎𝑛 =  

0, 𝑛 = 0
2, 𝑛 = 1
𝑎 𝑛
2
+ 𝑎 𝑛

4
+ 5𝑛, 𝑛 ≥ 2

• Then, find 𝐶 ∈ ℝ such that 
∀𝑛 ∈ ℕ [𝑎𝑛 ≤ 𝐶 ⋅ 𝑛]

• We proceed via strong induction on 𝑛.

Recursions like this have 
linear upper bounds



And Here’s Another

• Let 𝑎 be a sequence defined as follows:

𝑎𝑛 =  

0, 𝑛 = 0
2, 𝑛 = 1
𝑎 𝑛
2
+ 𝑎 𝑛

4
+ 5𝑛, 𝑛 ≥ 2

• Then, find 𝐶 ∈ ℝ such that 
∀𝑛 ∈ ℕ [𝑎𝑛 ≤ 𝐶 ⋅ 𝑛]

• We proceed via strong induction on 𝑛.
• In fact, to make some of the math easier, we will assume the hypothesis 

until 𝑃(𝑛 − 1) and prove the step for 𝑃(𝑛) instead of 𝑃(𝑛 + 1)



Finding C

• IB:
• For 𝑛 = 0, 𝑇0 ≤ 𝐶 ⋅ 0 ⇔ 0 ≤ 0. No constraints on 𝐶 yet! 

• For 𝑛 = 1, 𝑇1 ≤ 𝐶 ⋅ 𝑛 ⇔ 2 ≤ 𝐶. Done. We have our first lower bound for C.

• IH: Let 𝑛 ≥ 𝟐. Then, assume (∀𝑖 ∈ {0,1, 2, … , 𝑛 − 1}[𝑃 𝑖 ], where 𝑃 𝑖
means 𝑎𝑖 ≤ 𝐶 ⋅ 𝑖

• IS: We attempt to prove (𝑃 0 ∧ 𝑃 1 ∧ 𝑃 2 ∧ ⋯∧ 𝑃(𝑛 − 1)) ⇒ 𝑃 𝑛 :

 (𝑎𝑖 ≤ 𝐶 ⋅ 𝑖) ⇒ 𝑎𝑛 ≤ 𝐶 ⋅ 𝑛

𝑖 = 0

𝑖 = 𝑛 − 1

!!!!



Finding C

• IS: We attempt to prove (𝑃 1 ∧ 𝑃 2 ∧ ⋯∧ 𝑃(𝑛 − 1)) ⇒ 𝑃 𝑛 :

 (𝑎𝑖 ≤ 𝐶 ⋅ 𝑖) ⇒ 𝑎𝑛 ≤ 𝐶 ⋅ 𝑛

• From the IH, and taking into consideration that 0 ≤
𝑛

4
,
𝑛

2
≤ 𝑛, we 

have (next slide):

𝑖 = 0

𝑖 = 𝑛 − 1



Finding C

• From the IH, and taking into consideration that 0 ≤
𝑛

4
,
𝑛

2
≤ 𝑛, we 

have:

𝑎  𝑛 4
≤ 𝐶 ⋅  𝑛 4 ≤ 𝐶 ⋅

𝑛

4

𝑎  𝑛 2
≤ 𝐶 ⋅  𝑛 2 ≤ 𝐶 ⋅

𝑛

2

• 𝑎𝑛 = 𝑎⌊  𝑛 2⌋
+ 𝑎  𝑛 4

+ 5𝑛 ≤ 𝐶 ⋅
𝑛

2
+ 𝐶 ⋅

𝑛

4
+ 5𝑛 =

𝑛∗(3𝐶+20)

4



Finding C

• We have:

𝑎𝑛 ≤
𝑛∗(3𝐶+20)

4

• We want:
𝑎𝑛 ≤ 𝐶 ⋅ 𝑛

• Hence, we want a C such that:

𝑛 ∗ (3𝐶 + 20)

4
≤ 𝐶 ⋅ 𝑛



Finding C

𝑛 3𝐶 + 20

4
≤ 𝐶 ⋅ 𝑛 ⇔

3𝐶 + 20

4
≤ 𝐶 ⇔

3𝐶 + 20 ≤ 4𝐶 ⇔
𝐶 ≥ 20
⇒ 𝐶𝑚𝑖𝑛 = 20

𝒏 ≥ 𝟏



Constraints 

• From the IB: 𝐶 ≥ 2

• From the IS: 𝐶 ≥ 20

• Since we want to minimize 𝐶, we set 𝐶 = 20.



STOP 
RECORDING


