Dynamic Programming

250H



Example:ra =a_ . +a

n-1 Lvnl
Recursion
example(n):
if (n=0)
return O
else

return example(n) + example(floor(sqrt(n)))



Example:ra =a . +a |

Dynamic Programing(Bottom Up):
example(n):
a = array of length n
a[0]=0
fori=1ton
a[n] = a[n-1] + a[floor(sqrt(n))]

return a[n]



Example:ra =a . +a |

Dynamic Programing with Memoization (Top Down):
example(n):
a = array of length n
if (n=0)
return O
else
a[n] = a[n-1] + a[floor(sqrt(n))]

return a[n]



Dynamic Programing

e Solves problems by combining the solutions to subproblems
o When the subproblems overlap



Dynamic Programing

e Solves problems by combining the solutions to subproblems
o When the subproblems overlap

e Solves each sub sub problem just once then saves its answer in a table



Dynamic Programing

e Solves problems by combining the solutions to subproblems
o When the subproblems overlap

e Solves each sub sub problem just once then saves its answer in a table

e Typically Dynamic Programing is applied to optimization problems
o Each solution has a value and we want to find a solution with the optimal value
o This is an optimal solution to the problem
m There may be several



Developing a Dynamic-Programing Algorithm

1. Characterize the structure of an optimal solution



Developing a Dynamic-Programing Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution



Developing a Dynamic-Programing Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution, typically in a bottom-up fashion



Developing a Dynamic-Programing Algorithm

Characterize the structure of an optimal solution

Recursively define the value of an optimal solution

Compute the value of an optimal solution, typically in a bottom-up fashion
Construct an optimal solution from computed information

P WN o

If we only need the value of an optimal solution, and not the solution itself, then we
can omit step 4.



Memoization

e The word really is memoization, not memorization
o Comes from memo



Memoization

e The word really is memoization, not memorization
o Comes from memo

e A memoized recursive algorithm maintains an entry in a table for the solution
to each subproblem



Memoization

e The word really is memoization, not memorization
o Comes from memo
e A memoized recursive algorithm maintains an entry in a table for the solution

to each subproblem
e Each table entry initially contains a special value to indicate that the entry has

yet to be filled in



Memoization

e The word really is memoization, not memorization
o Comes from memo

e A memoized recursive algorithm maintains an entry in a table for the solution
to each subproblem

e Each table entry initially contains a special value to indicate that the entry has
yet to be filled in

e When the subproblem is first encountered as the recursive algorithm unfolds,
its solution is computed and then stored in the table



Memoization

e The word really is memoization, not memorization
o Comes from memo

e A memoized recursive algorithm maintains an entry in a table for the solution
to each subproblem

e Each table entry initially contains a special value to indicate that the entry has
yet to be filled in

e When the subproblem is first encountered as the recursive algorithm unfolds,
its solution is computed and then stored in the table

e FEach subsequent time that we encounter this subproblem, we simply look up
the value stored in the table and return it



