Dynamic Programming

250H
Example: \(a_n = a_{n-1} + a_{\lfloor \sqrt{n} \rfloor} \)

Recursion

example(n):

if (n = 0)
 return 0

else
 return example(n) + example(floor(sqrt(n)))
Example: $a_n = a_{n-1} + a_{\lfloor \sqrt{n} \rfloor}$

Dynamic Programming (Bottom Up):

```python
def example(n):
    a = array of length n
    a[0] = 0
    for i = 1 to n:
        a[i] = a[i-1] + a[floor(sqrt(n))]
    return a[n]
```

Example: $a_n = a_{n-1} + a_{\lfloor \sqrt{n} \rfloor}$

Dynamic Programming with Memoization (Top Down):

```python
example(n):
    a = array of length n
    if (n = 0)
        return 0
    else
        a[n] = a[n-1] + a[floor(sqrt(n))]
    return a[n]
```
Dynamic Programming

- Solves problems by combining the solutions to subproblems
 - When the subproblems overlap
Dynamic Programing

- Solves problems by combining the solutions to subproblems
 - When the subproblems overlap
- Solves each sub sub problem just once then saves its answer in a table
Dynamic Programming

- Solves problems by combining the solutions to subproblems
 - When the subproblems overlap
- Solves each sub sub problem just once then saves its answer in a table
- Typically Dynamic Programming is applied to optimization problems
 - Each solution has a value and we want to find a solution with the optimal value
 - This is *an* optimal solution to the problem
 - There may be several
Developing a Dynamic-Programming Algorithm

1. Characterize the structure of an optimal solution
Developing a Dynamic-Programming Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
Developing a Dynamic-Programming Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution, typically in a bottom-up fashion
Developing a Dynamic-Programing Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution, typically in a bottom-up fashion
4. Construct an optimal solution from computed information

If we only need the value of an optimal solution, and not the solution itself, then we can omit step 4.
Memoization

- The word really is memoization, not memorization
 - Comes from memo
Memoization

- The word really is memoization, not memorization
 - Comes from memo
- A memoized recursive algorithm maintains an entry in a table for the solution to each subproblem
Memoization

- The word really is memoization, not memorization
 - Comes from memo
- A memoized recursive algorithm maintains an entry in a table for the solution to each subproblem
- Each table entry initially contains a special value to indicate that the entry has yet to be filled in
Memoization

- The word really is memoization, not memorization
 - Comes from memo
- A memoized recursive algorithm maintains an entry in a table for the solution to each subproblem
- Each table entry initially contains a special value to indicate that the entry has yet to be filled in
- When the subproblem is first encountered as the recursive algorithm unfolds, its solution is computed and then stored in the table
Memoization

- The word really is memoization, not memorization
 - Comes from memo
- A memoized recursive algorithm maintains an entry in a table for the solution to each subproblem
- Each table entry initially contains a special value to indicate that the entry has yet to be filled in
- When the subproblem is first encountered as the recursive algorithm unfolds, its solution is computed and then stored in the table
- Each subsequent time that we encounter this subproblem, we simply look up the value stored in the table and return it