e^2 is Irrational

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Assume e^2 is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^2 = \frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^2b = a$, so $bn!e^2 = n!a \in \mathbb{N}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Assume e^2 is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^2 = \frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^2b = a$, so $bn!e^2 = n!a \in \mathbb{N}$. New Step $be = ae^{-1}$.

Assume e^2 is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^2 = \frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^2b = a$, so $bn!e^2 = n!a \in \mathbb{N}$. New Step $be = ae^{-1}$.

Some Things Stay the Same Mult both sides by n! to get $n!be = n!ae^{-1}$.

Assume e^2 is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^2 = \frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^2b = a$, so $bn!e^2 = n!a \in \mathbb{N}$. New Step $be = ae^{-1}$.

Some Things Stay the Same Mult both sides by n! to get $n!be = n!ae^{-1}$.

Some Things Change We do not have that either side is in \mathbb{N} .

Assume e^2 is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^2 = \frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^2b = a$, so $bn!e^2 = n!a \in \mathbb{N}$. New Step $be = ae^{-1}$.

Some Things Stay the Same Mult both sides by n! to get $n!be = n!ae^{-1}$.

Some Things Change We do not have that either side is in \mathbb{N} . **Plan** We prove that n!be is just a wee bit bigger than a \mathbb{N} and that $n!ae^{-1}$ is just a wee bit smaller than a \mathbb{N} . But they are equal! This will be our contradiction.

Lets Look at ben!

From the proof that e is irrational we have $C_1 \in \mathbb{N}$ such that

$$bn!e = b\left(C_1 + \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots\right).$$
$$bn!e = bC_1 + b\left(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots\right).$$

Lets Look at ben!

From the proof that e is irrational we have $C_1 \in \mathbb{N}$ such that

$$bn!e = b\left(C_1 + \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots\right).$$

$$bn!e = bC_1 + b\left(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots\right).$$

We also got that the sum is $\sim \frac{1}{n-1}$. Hence

$$bC_1 \leq bn!e \leq bC + \frac{b}{n-1}$$

ション ふぼう メリン メリン しょうくしゃ

We take *n* large enough so that $\frac{b}{n-1} < 1$. Hence there exists $D_1 = bC_1 \in \mathbb{N}$ and $0 < \delta_1 < \frac{1}{10}$. $bn!e = D_1 + \delta_1$.

We take n even.

$$an!e^{-1} = an!\left(\left(1 - \frac{1}{1!} + \frac{1}{2!} \pm \dots + \frac{1}{n!}\right) + \left(-\frac{1}{(n+1)!} + \frac{1}{(n+2)!} \pm \dots\right)\right)$$

We take *n* even.

$$an!e^{-1} = an!\left(\left(1 - \frac{1}{1!} + \frac{1}{2!} \pm \dots + \frac{1}{n!}\right) + \left(-\frac{1}{(n+1)!} + \frac{1}{(n+2)!} \pm \dots\right)\right)$$

$$= a\left(\left(n! - \frac{n!}{1!} + \frac{n!}{2!} \pm \dots + \frac{n!}{n!}\right) + \left(-\frac{n!}{(n+1)!} + \frac{n!}{(n+2)!} \pm \dots\right)\right).$$

We take *n* even.

$$an!e^{-1} = an! \left(\left(1 - \frac{1}{1!} + \frac{1}{2!} \pm \dots + \frac{1}{n!} \right) + \left(-\frac{1}{(n+1)!} + \frac{1}{(n+2)!} \pm \dots \right) \right)$$
$$= a \left(\left(n! - \frac{n!}{1!} + \frac{n!}{2!} \pm \dots + \frac{n!}{n!} \right) + \left(-\frac{n!}{(n+1)!} + \frac{n!}{(n+2)!} \pm \dots \right) \right).$$

(ロト (個) (E) (E) (E) (E) のへの

The first big parenthesis is a natural number, we call it C_2 . So

We take n even.

$$an!e^{-1} = an! \left(\left(1 - \frac{1}{1!} + \frac{1}{2!} \pm \dots + \frac{1}{n!} \right) + \left(-\frac{1}{(n+1)!} + \frac{1}{(n+2)!} \pm \dots \right) \right)$$
$$= a \left(\left(n! - \frac{n!}{1!} + \frac{n!}{2!} \pm \dots + \frac{n!}{n!} \right) + \left(-\frac{n!}{(n+1)!} + \frac{n!}{(n+2)!} \pm \dots \right) \right).$$
The first big parenthesis is a natural number, we call it *C*₂. So

$$an!e = a\left(C_2 - \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} \pm \cdots\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof Continued

Recap If $e^2 = \frac{a}{b}$ then for all even $n \in \mathbb{N}$

Proof Continued

Recap If $e^2 = \frac{a}{b}$ then for all even $n \in \mathbb{N}$

$$an!e = a\left(C_2 - \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} \pm \cdots\right).$$

Proof Continued

Recap If $e^2 = \frac{a}{b}$ then for all even $n \in \mathbb{N}$

$$an!e = a\left(C_2 - \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} \pm \cdots\right).$$
$$aC_2 + a\left(-\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} \pm \cdots\right).$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

We can approximate the sum by

$$-\frac{1}{n}+\frac{1}{n^2}-\frac{1}{n^3}+\cdots$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

We can approximate the sum by

$$-\frac{1}{n}+\frac{1}{n^2}-\frac{1}{n^3}+\cdots$$

We can approximate the sum by

$$-\frac{1}{n} + \frac{1}{n^2} - \frac{1}{n^3} + \cdots$$
$$-\left(\frac{1}{n} + \frac{1}{n^3} + \cdots\right) = -\frac{1/n}{1 - (1/n^2)} = -\frac{n}{n^2 - 1}.$$
$$\left(\frac{1}{n^2} + \frac{1}{n^4} + \cdots\right) = \frac{1/n^2}{1 - (1/n^2)} = \frac{1}{n^2 - 1}.$$

So sum is $\sim -\frac{n}{n^2-1} + \frac{1}{n^2-1} = \frac{1-n}{n^2-1} = \frac{-1}{n+1}$. Take *n* large enough so that $0 < \frac{a}{n+1} < 1$.

We can approximate the sum by

$$-\frac{1}{n} + \frac{1}{n^2} - \frac{1}{n^3} + \cdots$$
$$-\left(\frac{1}{n} + \frac{1}{n^3} + \cdots\right) = -\frac{1/n}{1 - (1/n^2)} = -\frac{n}{n^2 - 1}.$$
$$\left(\frac{1}{n^2} + \frac{1}{n^4} + \cdots\right) = \frac{1/n^2}{1 - (1/n^2)} = \frac{1}{n^2 - 1}.$$

So sum is $\sim -\frac{n}{n^2-1} + \frac{1}{n^2-1} = \frac{1-n}{n^2-1} = \frac{-1}{n+1}$. Take *n* large enough so that $0 < \frac{a}{n+1} < 1$. $an!e^{-1} = aC_2 - \frac{1}{n+1}$.

Hence there exists $D_2 = aC_2 \in \mathbb{N}$ and $0 < \delta_2 < \frac{1}{10}$ such that

$$an!e^{-1}=D_2-\delta_2.$$

If
$$e^2 = \frac{a}{b}$$
 then $be^2 = a$, so

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 約९.0

If $e^2 = \frac{a}{b}$ then $be^2 = a$, so for all n, $n!be = n!ae^{-1}$. We take n even and large.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

If $e^2 = \frac{a}{b}$ then $be^2 = a$, so for all n, $n!be = n!ae^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get

If $e^2 = \frac{a}{b}$ then $be^2 = a$, so for all n, $n!be = n!ae^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get

ション ふぼう メリン メリン しょうくしゃ

 $n!be = D_1 + \delta_1$ where $D_1 \in \mathbb{N}$ and δ_1 is small.

If $e^2 = \frac{a}{b}$ then $be^2 = a$, so for all n, $n!be = n!ae^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get

 $n!be = D_1 + \delta_1$ where $D_1 \in \mathbb{N}$ and δ_1 is small. $n!ae^{-1} = D_2 - \delta_2$ where $D_2 \in N$ and δ_2 is small.

If $e^2 = \frac{a}{b}$ then $be^2 = a$, so for all n, $n!be = n!ae^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get

ション ふぼう メリン メリン しょうくしゃ

$$n!be = D_1 + \delta_1$$
 where $D_1 \in \mathbb{N}$ and δ_1 is small.
 $n!ae^{-1} = D_2 - \delta_2$ where $D_2 \in N$ and δ_2 is small.

Since $n!be = n!ae^{-1}$ this is a contradiction.