
e2 is Irrational



Begin the Proof

Assume e2 is rational. So (∃a, b ∈ N) such that e2 = a
b .

Let n ∈ N be named later. It will be even.
e2b = a, so bn!e2 = n!a ∈ N.

New Step be = ae−1.

Some Things Stay the Same Mult both sides by n! to get
n!be = n!ae−1.

Some Things Change We do not have that either side is in N.

Plan We prove that n!be is just a wee bit bigger than a N and
that n!ae−1 is just a wee bit smaller than a N. But they are
equal! This will be our contradiction.
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Lets Look at ben!

From the proof that e is irrational we have C1 ∈ N such that

bn!e = b

(
C1 +

1

(n + 1)
+

1

(n + 1)(n + 2)
+ · · ·

)
.

bn!e = bC1 + b

(
1

(n + 1)
+

1

(n + 1)(n + 2)
+ · · ·

)
.

We also got that the sum is ∼ 1
n−1 . Hence

bC1 ≤ bn!e ≤ bC +
b

n − 1

We take n large enough so that b
n−1 < 1. Hence there exists

D1 = bC1 ∈ N and 0 < δ1 <
1
10 .

bn!e = D1 + δ1.
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Lets Look at ae−1n!

We take n even.

an!e−1 = an!
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1− 1

1!
+

1

2!
±· · ·+ 1
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)
+
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))

= a
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±· · ·+ n!

n!

)
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(
− n!

(n + 1)!
+

n!
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))
.

The first big parenthesis is a natural number, we call it C2. So

an!e = a

(
C2 −
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Proof Continued

Recap If e2 = a
b then for all even n ∈ N

an!e = a
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We Approximate the Sum

We can approximate the sum by

−1

n
+

1

n2
− 1

n3
+ · · ·

−
(

1

n
+

1

n3
+ · · ·

)
= − 1/n

1− (1/n2)
= − n

n2 − 1
.

(
1

n2
+

1

n4
+ · · ·

)
=

1/n2

1− (1/n2)
=

1

n2 − 1
.

So sum is ∼ − n
n2−1

+ 1
n2−1

= 1−n
n2−1

= −1
n+1 .

Take n large enough so that 0 < a
n+1 < 1.

an!e−1 = aC2 − 1
n+1 .

Hence there exists D2 = aC2 ∈ N and 0 < δ2 <
1
10 such that

an!e−1 = D2 − δ2.
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Recap and Finish

If e2 = a
b then be2 = a, so

for all n, n!be = n!ae−1. We take n even and large.
After algebra and using the series for e and e−1 we get

n!be = D1 + δ1 where D1 ∈ N and δ1 is small.
n!ae−1 = D2 − δ2 where D2 ∈ N and δ2 is small.

Since n!be = n!ae−1 this is a contradiction.
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