e^{2} is Irrational

Begin the Proof

Assume e^{2} is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^{2}=\frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^{2} b=a$, so $b n!e^{2}=n!a \in \mathbb{N}$.

Begin the Proof

Assume e^{2} is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^{2}=\frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^{2} b=a$, so $b n!e^{2}=n!a \in \mathbb{N}$.
New Step $b e=a e^{-1}$.

Begin the Proof

Assume e^{2} is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^{2}=\frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. It will be even. $e^{2} b=a$, so $b n!e^{2}=n!a \in \mathbb{N}$.
New Step $b e=a e^{-1}$.
Some Things Stay the Same Mult both sides by n ! to get $n!b e=n!a e^{-1}$.

Begin the Proof

Assume e^{2} is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^{2}=\frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later. It will be even.
$e^{2} b=a$, so $b n!e^{2}=n!a \in \mathbb{N}$.
New Step $b e=a e^{-1}$.
Some Things Stay the Same Mult both sides by n ! to get $n!b e=n!a e^{-1}$.
Some Things Change We do not have that either side is in \mathbb{N}.

Begin the Proof

Assume e^{2} is rational. So $(\exists a, b \in \mathbb{N})$ such that $e^{2}=\frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later. It will be even.
$e^{2} b=a$, so $b n!e^{2}=n!a \in \mathbb{N}$.
New Step $b e=a e^{-1}$.
Some Things Stay the Same Mult both sides by n ! to get $n!b e=n!a e^{-1}$.
Some Things Change We do not have that either side is in \mathbb{N}.
Plan We prove that $n!b e$ is just a wee bit bigger than a \mathbb{N} and that $n!a e^{-1}$ is just a wee bit smaller than a \mathbb{N}. But they are equal! This will be our contradiction.

Lets Look at ben!

From the proof that e is irrational we have $C_{1} \in \mathbb{N}$ such that

$$
\begin{aligned}
b n!e & =b\left(C_{1}+\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \\
b n!e & =b C_{1}+b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right)
\end{aligned}
$$

Lets Look at ben!

From the proof that e is irrational we have $C_{1} \in \mathbb{N}$ such that

$$
\begin{aligned}
b n!e & =b\left(C_{1}+\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \\
b n!e & =b C_{1}+b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right)
\end{aligned}
$$

We also got that the sum is $\sim \frac{1}{n-1}$. Hence

$$
b C_{1} \leq b n!e \leq b C+\frac{b}{n-1}
$$

We take n large enough so that $\frac{b}{n-1}<1$. Hence there exists $D_{1}=b C_{1} \in \mathbb{N}$ and $0<\delta_{1}<\frac{1}{10}$. $b n!e=D_{1}+\delta_{1}$.

Lets Look at $a e^{-1} n!$

We take n even.

$$
a n!e^{-1}=a n!\left(\left(1-\frac{1}{1!}+\frac{1}{2!} \pm \cdots+\frac{1}{n!}\right)+\left(-\frac{1}{(n+1)!}+\frac{1}{(n+2)!} \pm \cdots\right)\right)
$$

Lets Look at $a e^{-1} n!$

We take n even.

$$
\begin{aligned}
& a n!e^{-1}=a n!\left(\left(1-\frac{1}{1!}+\frac{1}{2!} \pm \cdots+\frac{1}{n!}\right)+\left(-\frac{1}{(n+1)!}+\frac{1}{(n+2)!} \pm \cdots\right)\right) \\
& =a\left(\left(n!-\frac{n!}{1!}+\frac{n!}{2!} \pm \cdots+\frac{n!}{n!}\right)+\left(-\frac{n!}{(n+1)!}+\frac{n!}{(n+2)!} \pm \cdots\right)\right)
\end{aligned}
$$

Lets Look at $a e^{-1} n!$

We take n even.

$$
\begin{aligned}
& a n!e^{-1}=a n!\left(\left(1-\frac{1}{1!}+\frac{1}{2!} \pm \cdots+\frac{1}{n!}\right)+\left(-\frac{1}{(n+1)!}+\frac{1}{(n+2)!} \pm \cdots\right)\right) \\
& =a\left(\left(n!-\frac{n!}{1!}+\frac{n!}{2!} \pm \cdots+\frac{n!}{n!}\right)+\left(-\frac{n!}{(n+1)!}+\frac{n!}{(n+2)!} \pm \cdots\right)\right)
\end{aligned}
$$

The first big parenthesis is a natural number, we call it C_{2}. So

Lets Look at $a e^{-1} n!$

We take n even.

$$
\begin{aligned}
& a n!e^{-1}=a n!\left(\left(1-\frac{1}{1!}+\frac{1}{2!} \pm \cdots+\frac{1}{n!}\right)+\left(-\frac{1}{(n+1)!}+\frac{1}{(n+2)!} \pm \cdots\right)\right) \\
& =a\left(\left(n!-\frac{n!}{1!}+\frac{n!}{2!} \pm \cdots+\frac{n!}{n!}\right)+\left(-\frac{n!}{(n+1)!}+\frac{n!}{(n+2)!} \pm \cdots\right)\right)
\end{aligned}
$$

The first big parenthesis is a natural number, we call it C_{2}. So

$$
a n!e=a\left(C_{2}-\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)} \pm \cdots\right)
$$

Proof Continued

Recap If $e^{2}=\frac{a}{b}$ then for all even $n \in \mathbb{N}$

Proof Continued

Recap If $e^{2}=\frac{a}{b}$ then for all even $n \in \mathbb{N}$

$$
a n!e=a\left(C_{2}-\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)} \pm \cdots\right)
$$

Proof Continued

Recap If $e^{2}=\frac{a}{b}$ then for all even $n \in \mathbb{N}$

$$
\begin{gathered}
a n!e=a\left(C_{2}-\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)} \pm \cdots\right) . \\
a C_{2}+a\left(-\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)} \pm \cdots\right)
\end{gathered}
$$

We Approximate the Sum

We can approximate the sum by

$$
-\frac{1}{n}+\frac{1}{n^{2}}-\frac{1}{n^{3}}+\cdots
$$

We Approximate the Sum

We can approximate the sum by

$$
\begin{gathered}
-\frac{1}{n}+\frac{1}{n^{2}}-\frac{1}{n^{3}}+\cdots \\
-\left(\frac{1}{n}+\frac{1}{n^{3}}+\cdots\right)=-\frac{1 / n}{1-\left(1 / n^{2}\right)}=-\frac{n}{n^{2}-1} \\
\left(\frac{1}{n^{2}}+\frac{1}{n^{4}}+\cdots\right)=\frac{1 / n^{2}}{1-\left(1 / n^{2}\right)}=\frac{1}{n^{2}-1}
\end{gathered}
$$

We Approximate the Sum

We can approximate the sum by

$$
\begin{gathered}
-\frac{1}{n}+\frac{1}{n^{2}}-\frac{1}{n^{3}}+\cdots \\
-\left(\frac{1}{n}+\frac{1}{n^{3}}+\cdots\right)=-\frac{1 / n}{1-\left(1 / n^{2}\right)}=-\frac{n}{n^{2}-1} \\
\left(\frac{1}{n^{2}}+\frac{1}{n^{4}}+\cdots\right)=\frac{1 / n^{2}}{1-\left(1 / n^{2}\right)}=\frac{1}{n^{2}-1}
\end{gathered}
$$

So sum is $\sim-\frac{n}{n^{2}-1}+\frac{1}{n^{2}-1}=\frac{1-n}{n^{2}-1}=\frac{-1}{n+1}$.
Take n large enough so that $0<\frac{a}{n+1}<1$.

We Approximate the Sum

We can approximate the sum by

$$
\begin{gathered}
-\frac{1}{n}+\frac{1}{n^{2}}-\frac{1}{n^{3}}+\cdots \\
-\left(\frac{1}{n}+\frac{1}{n^{3}}+\cdots\right)=-\frac{1 / n}{1-\left(1 / n^{2}\right)}=-\frac{n}{n^{2}-1} . \\
\left(\frac{1}{n^{2}}+\frac{1}{n^{4}}+\cdots\right)=\frac{1 / n^{2}}{1-\left(1 / n^{2}\right)}=\frac{1}{n^{2}-1} .
\end{gathered}
$$

So sum is $\sim-\frac{n}{n^{2}-1}+\frac{1}{n^{2}-1}=\frac{1-n}{n^{2}-1}=\frac{-1}{n+1}$.
Take n large enough so that $0<\frac{a}{n+1}<1$.
$a n!e^{-1}=a C_{2}-\frac{1}{n+1}$.
Hence there exists $D_{2}=a C_{2} \in \mathbb{N}$ and $0<\delta_{2}<\frac{1}{10}$ such that

$$
a n!e^{-1}=D_{2}-\delta_{2}
$$

Recap and Finish

If $e^{2}=\frac{a}{b}$ then $b e^{2}=a$, so

Recap and Finish

If $e^{2}=\frac{a}{b}$ then $b e^{2}=a$, so
for all n, $n!b e=n!a e^{-1}$. We take n even and large.

Recap and Finish

If $e^{2}=\frac{a}{b}$ then $b e^{2}=a$, so
for all $n, n!b e=n!a e^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get

Recap and Finish

If $e^{2}=\frac{a}{b}$ then $b e^{2}=a$, so for all $n, n!b e=n!a e^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get
$n!$ be $=D_{1}+\delta_{1}$ where $D_{1} \in \mathbb{N}$ and δ_{1} is small.

Recap and Finish

If $e^{2}=\frac{a}{b}$ then $b e^{2}=a$, so for all $n, n!b e=n!a e^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get
n! be $=D_{1}+\delta_{1}$ where $D_{1} \in \mathbb{N}$ and δ_{1} is small.
$n!a e^{-1}=D_{2}-\delta_{2}$ where $D_{2} \in N$ and δ_{2} is small.

Recap and Finish

If $e^{2}=\frac{a}{b}$ then $b e^{2}=a$, so
for all $n, n!b e=n!a e^{-1}$. We take n even and large. After algebra and using the series for e and e^{-1} we get
$n!b e=D_{1}+\delta_{1}$ where $D_{1} \in \mathbb{N}$ and δ_{1} is small.
$n!a e^{-1}=D_{2}-\delta_{2}$ where $D_{2} \in N$ and δ_{2} is small.
Since $n!b e=n!a e^{-1}$ this is a contradiction.

