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Begin the Proof

Assume e? is rational. So (Ja, b € N) such that e? = 2.
Let n € N be named later. It will be even.
e?b = a, so bnle? = nla e N.

New Step be = ae 1.

Some Things Stay the Same Mult both sides by n! to get
nlbe = nlae .

Some Things Change We do not have that either side is in N.
Plan We prove that nlbe is just a wee bit bigger than a N and
that nlae™! is just a wee bit smaller than a N. But they are
equal! This will be our contradiction.
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We also got that the sum is ~ ﬁ Hence

bCl < bn|e< bC+%1

We take n large enough so that 7 < 1. Hence there exists

D;=bC;eNand 0 < §; < 2 i
bnle = D1 + 61.
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Proof Continued

Recap If e* = 2 then for all even n € N

1 1
an!e:a<C2— (+1) + CESCES) :t)

1 1
aC2+a(_(n+1)+(n+1)(n+2)i"')'
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We Approximate the Sum
We can approximate the sum by

111
n n?2 nd
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1, 1. 1
n? = n* C1—(1/n?) -1

1 1—n -1

H n
Sosumis ~ — e + 5 = 07 = 7
Take n large enough so that 0 < njl < 1.

anle™! = aC, — ﬁ
Hence there exists D> = a(b € Nand 0 < §, < % such that

anle™ = D, — 5.
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Recap and Finish

If 2 = 2 then be? = a, so
for all n, nlbe = nlae™!. We take n even and large.
After algebra and using the series for e and e™! we get

nlbe = D; + 61 where D; € N and 47 is small.
nlae™! = Dy — 5 where D> € N and &, is small.

Since n'be = nlae! this is a contradiction.



