e is Irrational
One Origin of e

We paraphrase Jacob Bernoulli’s thoughts in the 1680’s.
We paraphrase Jacob Bernoulli’s thoughts in the 1680’s.
You have 1 bill in a bank that pays 100% interest per year.
We paraphrase Jacob Bernoulli’s thoughts in the 1680’s. You have 1 bill in a bank that pays 100% interest per year.
(1) Pays out only: you have 2 bills.
We paraphrase Jacob Bernoulli’s thoughts in the 1680’s. You have 1 bill in a bank that pays 100% interest per year.

(1) Pays out only: you have 2 bills.
(2) Pays out twice: you have \(1 + \left(\frac{1}{2} \times 1 \right) + \left(\frac{1}{2} \times 1.5 \right) = \$2.25 \) bills.
One Origin of e

We paraphrase Jacob Bernoulli’s thoughts in the 1680’s. You have 1 bill in a bank that pays 100% interest per year.

1. Pays out only: you have 2 bills.

2. Pays out twice: you have $1 + \left(\frac{1}{2} \times 1 \right) + \left(\frac{1}{2} \times 1.5 \right) = 2.25$ bills.

3. Pays out thrice: you have

 $1 + \left(\frac{1}{3} \times 1 \right) + \left(\frac{1}{3} \times \frac{4}{3} \right) + \left(\frac{1}{3} \times \frac{16}{9} \right) = 2.37037 \ldots$ bills.
We paraphrase Jacob Bernoulli’s thoughts in the 1680’s.
You have 1 bill in a bank that pays 100% interest per year.
(1) Pays out only: you have 2 bills.
(2) Pays out twice: you have $1 + \left(\frac{1}{2} \times 1\right) + \left(\frac{1}{2} \times 1.5\right) = \2.25 bills.
(3) Pays out thrice: you have
$1 + \left(\frac{1}{3} \times 1\right) + \left(\frac{1}{3} \times \frac{4}{3}\right) + \left(\frac{1}{3} \times \frac{16}{9}\right) = \$2.37037 \ldots$ bills.
(4) Pays out continuously? You have e bills.
Other Definitions of e

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$
Other Definitions of e

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

This is the one we will use:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots$$
History of e Irrational, e Transcendental

1. Euler showed e was irrational in 1737 using continued fractions.
2. Fourier gave an elementary proof in 1815 which we will present.
3. Liouville proved that a particular contrived number was transcendental in 1851.
4. Hermite proved e is transcendental in 1873. 1st non-contrived number to be proven transcendental.
5. Cantor proved that most numbers are transcendental in 1874, and gave a method for constructing some.
(1) Euler showed e was irrational in 1737 using continued fractions.
(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
(3) Liouville proved that a particular contrived number was transcendental in 1851.
(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
(3) Liouville proved that a particular contrived number was transcendental in 1851.
(4) Hermite proved e is transcendental in 1873. 1st non-contrived number to be proven transcendental.
History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
(3) Liouville proved that a particular contrived number was transcendental in 1851.
(4) Hermite proved e is transcendental in 1873. 1st non-contrived number to be proven transcendental.
(5) Cantor proved that most numbers are transcendental in 1874, and gave a method for constructing some.
Proof that e is Irrational
Warmup: Proof that $e \notin \mathbb{N}$

$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!}.$

For $i \geq 3$, $\frac{1}{i!} < \frac{1}{2^{i-1}}$.

$\sum_{i=3}^{\infty} \frac{1}{i!} < \sum_{i=3}^{\infty} \frac{1}{2^{i-1}} = \frac{1}{2}.$

Hence $e = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!} < 2.5 + 0.5 = 3$.

Hence $2 < e < 3$ so $e \notin \mathbb{N}$.
Warmup: Proof that $e \notin \mathbb{N}$

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!}.$$
Warmup: Proof that $e \notin \mathbb{N}$

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!}.$$

For $i \geq 3$, $\frac{1}{i!} < \frac{1}{2^{i-1}}$.

Hence $2 < e < 3$ so $e \notin \mathbb{N}$.
Warmup: Proof that $e \not\in \mathbb{N}$

\[e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!}. \]

For $i \geq 3$, $\frac{1}{i!} < \frac{1}{2^{i-1}}$.

\[\sum_{i=3}^{\infty} \frac{1}{i!} < \sum_{i=3}^{\infty} \frac{1}{2^{i-1}} = \frac{1}{2}. \]
Warmup: Proof that $e \notin \mathbb{N}$

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!}.$$

For $i \geq 3$, $\frac{1}{i!} < \frac{1}{2^{i-1}}$.

$$\sum_{i=3}^{\infty} \frac{1}{i!} < \sum_{i=3}^{\infty} \frac{1}{2^{i-1}} = \frac{1}{2}.$$

Hence

$$e = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!} < 2.5 + 0.5 = 3.$$
Warmup: Proof that $e \notin \mathbb{N}$

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!}.$$

For $i \geq 3$, $\frac{1}{i!} < \frac{1}{2^{i-1}}$.

$$\sum_{i=3}^{\infty} \frac{1}{i!} < \sum_{i=3}^{\infty} \frac{1}{2^{i-1}} = \frac{1}{2}.$$

Hence

$$e = 2.5 + \sum_{i=3}^{\infty} \frac{1}{i!} < 2.5 + 0.5 = 3.$$

Hence $2 < e < 3$ so $e \notin \mathbb{N}$.
Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e = \frac{a}{b}$.

Let $n \in \mathbb{N}$ be named later.

eb = a, so $bn! e = n! a \in \mathbb{N}$.

Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e = \frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later.
$eb = a$, so $bn!e = n!a \in \mathbb{N}$.

$$bn!e = bn! \left(\left(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!} \right) + \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots \right) \right)$$
Proof that \(e \) is Irrational

Assume \(e \) is rational. So \(\exists a, b \in \mathbb{N} \) such that \(e = \frac{a}{b} \).

Let \(n \in \mathbb{N} \) be named later.

\(eb = a \), so \(bn!e = n!a \in \mathbb{N} \).

\[
bn!e = bn! \left(\left(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!} \right) + \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots \right) \right)
\]

\[
= b \left(\left(n! + \frac{n!}{1!} + \frac{n!}{2!} + \cdots + \frac{n!}{n!} \right) + \left(\frac{n!}{(n+1)!} + \frac{n!}{(n+2)!} + \cdots \right) \right).
\]
Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e = \frac{a}{b}$. Let $n \in \mathbb{N}$ be named later.

$eb = a$, so $bn!e = n!a \in \mathbb{N}$.

$$bn!e = bn!\left(\left(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}\right) + \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots\right)\right)$$

$$= b\left(\left(n! + \frac{n!}{1!} + \frac{n!}{2!} + \cdots + \frac{n!}{n!}\right) + \left(\frac{n!}{(n+1)!} + \frac{n!}{(n+2)!} + \cdots\right)\right).$$

The first big parenthesis is a natural number, we call it C. So
Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e = \frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later.
$eb = a$, so $bn!e = n!a \in \mathbb{N}$.

$$bn!e = bn!\left(\left(\frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}\right) + \left(\frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots\right)\right)$$

$$= b\left(\left(n! + \frac{n!}{1!} + \frac{n!}{2!} + \cdots + \frac{n!}{n!}\right) + \left(\frac{n!}{(n+1)!} + \frac{n!}{(n+2)!} + \cdots\right)\right).$$

The first big parenthesis is a natural number, we call it C. So

$$bn!e = b\left(C + \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots\right) \in \mathbb{N}.$$
Proof Continued

Recap If $e = \frac{a}{b}$ then for all $n \in \mathbb{N}$
Proof Continued

Recap If $e = \frac{a}{b}$ then for all $n \in \mathbb{N}$

$$bn!e = b\left(C + \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots \right) \in \mathbb{N}. $$
Recap If \(e = \frac{a}{b} \) then for all \(n \in \mathbb{N} \)

\[
bn!e = b \left(C + \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots \right) \in \mathbb{N}.
\]

\[
bC + b \left(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots \right) \in \mathbb{N}.
\]
Recap If \(e = \frac{a}{b} \) then for all \(n \in \mathbb{N} \)

\[
b_n! e = b \left(C + \frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots \right) \in \mathbb{N}.
\]

\[
bC + b \left(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots \right) \in \mathbb{N}.
\]

\[
b \left(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots \right) \in \mathbb{N}.
\]
For large n we can approximate it very well by

\[
\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \cdots
\]

\[
= \frac{1}{n} \left(1 + \frac{1}{n} + \frac{1}{n^2} + \cdots + \right) \frac{1}{n} \frac{1}{1 - (1/n)} = \frac{1}{n - 1}
\]
Proof Continued

Recap (again!)

If \(e = \frac{a}{b} \) then \(be = a \), so
Recap (again!)
If \(e = \frac{a}{b} \) then \(be = a \), so
for all \(n \), \(n!be = n!a \in \mathbb{N} \).
Recap (again!)
If \(e = \frac{a}{b} \) then \(be = a \), so
for all \(n \), \(n!be = n!a \in \mathbb{N} \).
After algebra and using the series for \(e \) we get
Recap (again!)

If $e = \frac{a}{b}$ then $be = a$, so
for all n, $n!be = n!a \in \mathbb{N}$.
After algebra and using the series for e we get
\[
b\left(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots \right) \in \mathbb{N}.
\]
After more algebra we get
\[
b \times \frac{1}{n-1} \in \mathbb{N}.
\]
Recap (again!)
If $e = \frac{a}{b}$ then $be = a$, so for all n, $n!be = n!a \in \mathbb{N}$.
After algebra and using the series for e we get

$$b\left(\frac{1}{(n+1)} + \frac{1}{(n+1)(n+2)} + \cdots\right) \in \mathbb{N}.$$

After more algebra we get

$$b \times \frac{1}{n-1} \in \mathbb{N}.$$

Take n big enough and this cannot happen. Contradiction!