
e is Irrational



One Origin of e

We paraphrase Jacob Bernoulli’s thoughts in the 1680’s.

You have 1 bill in a bank that pays 100% interest per year.

(1) Pays out only: you have 2 bills.

(2) Pays out twice: you have 1 + (12 × 1) + (12 × 1.5) = $2.25 bills.

(3) Pays out thrice: you have
1 + (13 × 1) + (13 ×

4
3) + (13 ×

16
9 ) = $2.37037 . . . bills.

(4) Pays out continuously? You have e bills.
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Other Definitions of e

lim
n→∞

(
1 +

1

n

)n

= e

This is the one we will use:

e = 1 +
1

1!
+

1

2!
+ · · ·
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History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.

(2) Fourier gave an elementary proof in 1815 which we will present.

(3) Liouvlle proved that a particular contrived number was
transcendental in 1851.

(4) Hermite proved e is transcendental in 1873. 1st non-contrived
number to be proven transcendental.

(5) Cantor proved that most numbers are transcendental in 1874,
and gave a method for constructing some.
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Proof that e is Irrational



Warmup: Proof that e /∈ N
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2
.

Hence

e = 2.5 +
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i=3

1

i !
< 2.5 + 0.5 = 3.

Hence 2 < e < 3 so e /∈ N.
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Proof that e is Irrational

Assume e is rational. So ∃a, b ∈ N such that e = a
b .

Let n ∈ N be named later.
eb = a, so bn!e = n!a ∈ N.
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))
.

The first big parenthesis is a natural number, we call it C . So

bn!e = b

(
C +

1

(n + 1)
+

1

(n + 1)(n + 2)
+ · · ·

)
∈ N.
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Proof Continued

Recap If e = a
b then for all n ∈ N
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Lets Look at that Series

1
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For large n we can approximate it very well by
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n − 1



Proof Continued

Recap (again!)
If e = a

b then be = a, so

for all n, n!be = n!a ∈ N.
After algebra and using the series for e we get

b

(
1

(n + 1)
+

1

(n + 1)(n + 2)
+ · · ·

)
∈ N.

After more algebra we get

b × 1

n − 1
∈ N.

Take n big enough and this cannot happen. Contradiction!
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