e is Irrational

One Origin of e

We paraphrase Jacob Bernoulli's thoughts in the 1680's.

One Origin of e

We paraphrase Jacob Bernoulli's thoughts in the 1680's.
You have 1 bill in a bank that pays 100% interest per year.

One Origin of e

We paraphrase Jacob Bernoulli's thoughts in the 1680's.
You have 1 bill in a bank that pays 100% interest per year.
(1) Pays out only: you have 2 bills.

One Origin of e

We paraphrase Jacob Bernoulli's thoughts in the 1680's.
You have 1 bill in a bank that pays 100% interest per year.
(1) Pays out only: you have 2 bills.
(2) Pays out twice: you have $1+\left(\frac{1}{2} \times 1\right)+\left(\frac{1}{2} \times 1.5\right)=\$ 2.25$ bills.

One Origin of e

We paraphrase Jacob Bernoulli's thoughts in the 1680's.
You have 1 bill in a bank that pays 100% interest per year.
(1) Pays out only: you have 2 bills.
(2) Pays out twice: you have $1+\left(\frac{1}{2} \times 1\right)+\left(\frac{1}{2} \times 1.5\right)=\$ 2.25$ bills.
(3) Pays out thrice: you have
$1+\left(\frac{1}{3} \times 1\right)+\left(\frac{1}{3} \times \frac{4}{3}\right)+\left(\frac{1}{3} \times \frac{16}{9}\right)=\$ 2.37037 \ldots$ bills.

One Origin of e

We paraphrase Jacob Bernoulli's thoughts in the 1680's.
You have 1 bill in a bank that pays 100% interest per year.
(1) Pays out only: you have 2 bills.
(2) Pays out twice: you have $1+\left(\frac{1}{2} \times 1\right)+\left(\frac{1}{2} \times 1.5\right)=\$ 2.25$ bills.
(3) Pays out thrice: you have
$1+\left(\frac{1}{3} \times 1\right)+\left(\frac{1}{3} \times \frac{4}{3}\right)+\left(\frac{1}{3} \times \frac{16}{9}\right)=\$ 2.37037 \ldots$ bills.
(4) Pays out continuously? You have e bills.

Other Definitions of e

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Other Definitions of e

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

This is the one we will use:

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots
$$

History of e Irrational, e Transcendental

History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.

History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.

History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
(3) Liouvlle proved that a particular contrived number was
transcendental in 1851.

History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
(3) Liouvlle proved that a particular contrived number was transcendental in 1851.
(4) Hermite proved e is transcendental in 1873. 1st non-contrived number to be proven transcendental.

History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
(3) Liouvlle proved that a particular contrived number was transcendental in 1851.
(4) Hermite proved e is transcendental in 1873. 1st non-contrived number to be proven transcendental.
(5) Cantor proved that most numbers are transcendental in 1874, and gave a method for constructing some.

Proof that e is Irrational

Warmup: Proof that $e \notin \mathbb{N}$

Warmup: Proof that e $\notin \mathbb{N}$

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots=2.5+\sum_{i=3}^{\infty} \frac{1}{i!} .
$$

Warmup: Proof that e $\notin \mathbb{N}$

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots=2.5+\sum_{i=3}^{\infty} \frac{1}{i!} .
$$

For $i \geq 3, \frac{1}{i!}<\frac{1}{2^{i-1}}$.

Warmup: Proof that e $\notin \mathbb{N}$

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots=2.5+\sum_{i=3}^{\infty} \frac{1}{i!} .
$$

For $i \geq 3, \frac{1}{i!}<\frac{1}{2^{i-1}}$.

$$
\sum_{i=3}^{\infty} \frac{1}{i!}<\sum_{i=3}^{\infty} \frac{1}{2^{i-1}}=\frac{1}{2} .
$$

Warmup: Proof that e $\notin \mathbb{N}$

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots=2.5+\sum_{i=3}^{\infty} \frac{1}{i!} .
$$

For $i \geq 3, \frac{1}{i!}<\frac{1}{2^{i-1}}$.

$$
\sum_{i=3}^{\infty} \frac{1}{i!}<\sum_{i=3}^{\infty} \frac{1}{2^{i-1}}=\frac{1}{2} .
$$

Hence

$$
e=2.5+\sum_{i=3}^{\infty} \frac{1}{i!}<2.5+0.5=3 .
$$

Warmup: Proof that $e \notin \mathbb{N}$

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\cdots=2.5+\sum_{i=3}^{\infty} \frac{1}{i!}
$$

For $i \geq 3, \frac{1}{i!}<\frac{1}{2^{i-1}}$.

$$
\sum_{i=3}^{\infty} \frac{1}{i!}<\sum_{i=3}^{\infty} \frac{1}{2^{i-1}}=\frac{1}{2}
$$

Hence

$$
e=2.5+\sum_{i=3}^{\infty} \frac{1}{i!}<2.5+0.5=3 .
$$

Hence $2<e<3$ so $e \notin \mathbb{N}$.

Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e=\frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later.
$e b=a$, so $b n!e=n!a \in \mathbb{N}$.

Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e=\frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later. $e b=a$, so $b n!e=n!a \in \mathbb{N}$.

$$
b n!e=b n!\left(\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)+\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots\right)\right)
$$

Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e=\frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later. $e b=a$, so $b n!e=n!a \in \mathbb{N}$.

$$
\begin{aligned}
& b n!e=b n!\left(\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)+\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots\right)\right) \\
& =b\left(\left(n!+\frac{n!}{1!}+\frac{n!}{2!}+\cdots+\frac{n!}{n!}\right)+\left(\frac{n!}{(n+1)!}+\frac{n!}{(n+2)!}+\cdots\right)\right) .
\end{aligned}
$$

Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e=\frac{a}{b}$.
Let $n \in \mathbb{N}$ be named later. $e b=a$, so $b n!e=n!a \in \mathbb{N}$.

$$
\begin{aligned}
& b n!e=b n!\left(\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)+\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots\right)\right) \\
& =b\left(\left(n!+\frac{n!}{1!}+\frac{n!}{2!}+\cdots+\frac{n!}{n!}\right)+\left(\frac{n!}{(n+1)!}+\frac{n!}{(n+2)!}+\cdots\right)\right) .
\end{aligned}
$$

The first big parenthesis is a natural number, we call it C. So

Proof that e is Irrational

Assume e is rational. So $\exists a, b \in \mathbb{N}$ such that $e=\frac{a}{b}$. Let $n \in \mathbb{N}$ be named later. $e b=a$, so $b n!e=n!a \in \mathbb{N}$.

$$
\begin{aligned}
& b n!e=b n!\left(\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)+\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots\right)\right) \\
& =b\left(\left(n!+\frac{n!}{1!}+\frac{n!}{2!}+\cdots+\frac{n!}{n!}\right)+\left(\frac{n!}{(n+1)!}+\frac{n!}{(n+2)!}+\cdots\right)\right) .
\end{aligned}
$$

The first big parenthesis is a natural number, we call it C. So

$$
b n!e=b\left(C+\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N}
$$

Proof Continued

Recap If $e=\frac{a}{b}$ then for all $n \in \mathbb{N}$

Proof Continued

Recap If $e=\frac{a}{b}$ then for all $n \in \mathbb{N}$

$$
b n!e=b\left(C+\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N}
$$

Proof Continued

Recap If $e=\frac{a}{b}$ then for all $n \in \mathbb{N}$

$$
\begin{gathered}
b n!e=b\left(C+\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N} . \\
b C+b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N} .
\end{gathered}
$$

Proof Continued

Recap If $e=\frac{a}{b}$ then for all $n \in \mathbb{N}$

$$
\begin{gathered}
b n!e=b\left(C+\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N} . \\
b C+b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N} . \\
b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N} .
\end{gathered}
$$

Lets Look at that Series

$$
\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots
$$

For large n we can approximate it very well by

$$
\begin{gathered}
\frac{1}{n}+\frac{1}{n^{2}}+\cdots \\
=\frac{1}{n}\left(1+\frac{1}{n}+\frac{1}{n^{2}}+\cdots+\right)=\frac{1}{n} \frac{1}{1-(1 / n)}=\frac{1}{n-1}
\end{gathered}
$$

Proof Continued

Recap (again!)
If $e=\frac{a}{b}$ then $b e=a$, so

Proof Continued

Recap (again!)
If $e=\frac{a}{b}$ then $b e=a$, so
for all $n, n!b e=n!a \in \mathbb{N}$.

Proof Continued

Recap (again!)
If $e=\frac{a}{b}$ then $b e=a$, so
for all $n, n!b e=n!a \in \mathbb{N}$.
After algebra and using the series for e we get

Proof Continued

Recap (again!)
If $e=\frac{a}{b}$ then $b e=a$, so
for all $n, n!b e=n!a \in \mathbb{N}$.
After algebra and using the series for e we get

$$
b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N}
$$

After more algebra we get

$$
b \times \frac{1}{n-1} \in \mathbb{N}
$$

Proof Continued

Recap (again!)
If $e=\frac{a}{b}$ then $b e=a$, so
for all $n, n!b e=n!a \in \mathbb{N}$.
After algebra and using the series for e we get

$$
b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)(n+2)}+\cdots\right) \in \mathbb{N}
$$

After more algebra we get

$$
b \times \frac{1}{n-1} \in \mathbb{N}
$$

Take n big enough and this cannot happen. Contradiction!

