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One Origin of e

We paraphrase Jacob Bernoulli's thoughts in the 1680's.

You have 1 bill in a bank that pays 100% interest per year.

(1) Pays out only: you have 2 bills.

(2) Pays out twice: you have 1+ (3 x 1) + (3 x 1.5) = $2.25 bills.

(3) Pays out thrice: you have
1+ (3x1)+ (3 x3)+ (3 x10)=9$237037... bills.

(4) Pays out continuously? You have e bills.
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This is the one we will use:
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History of e Irrational, e Transcendental

(1) Euler showed e was irrational in 1737 using continued fractions.
(2) Fourier gave an elementary proof in 1815 which we will present.
(

3) Liouvlle proved that a particular contrived number was
transcendental in 1851.

(4) Hermite proved e is transcendental in 1873. 1st non-contrived
number to be proven transcendental.

(5) Cantor proved that most numbers are transcendental in 1874,
and gave a method for constructing some.
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Recap If e = § then for all n € N
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Lets Look at that Series
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For large n we can approximate it very well by
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Proof Continued

Recap (again!)

If e = 7 then be = a, so

for all n, nlbe = nla € N.

After algebra and using the series for e we get

1 1
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After more algebra we get
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Take n big enough and this cannot happen. Contradiction!



