The Forehead Game

Exposition by William Gasarch

May 3, 2021

The Problem

Alice is A, Bob is B, Carol is C.

The Problem

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

The Problem

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.
2. A's forehead has a, B 's has b, C 's has c.

The Problem

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.
2. A's forehead has a, B 's has b, C 's has c.
3. They want to know if $a+b+c=2^{n+1}-1$.

The Problem

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.
2. A's forehead has a, B 's has b, C 's has c.
3. They want to know if $a+b+c=2^{n+1}-1$.
4. Solution A says $b, \mathrm{~B}$ then computes $a+b+c$ and then says YES if $a+b+c=2^{n+1}-1$, NO if not.

The Problem

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.
2. A's forehead has a, B 's has b, C 's has c.
3. They want to know if $a+b+c=2^{n+1}-1$.
4. Solution A says $b, \mathrm{~B}$ then computes $a+b+c$ and then says YES if $a+b+c=2^{n+1}-1$, NO if not.
5. Solution uses $n+1$ bits of comm. Can do better?

Vote

Vote

1. Any protocol requires $n+1$ bits, hence the one given that takes $n+1$ is the best you can do.

Vote

1. Any protocol requires $n+1$ bits, hence the one given that takes $n+1$ is the best you can do.
2. There is a protocol that takes αn bits for some $\alpha<1$ but any protocol requires $\Omega(n)$ bits.

Vote

1. Any protocol requires $n+1$ bits, hence the one given that takes $n+1$ is the best you can do.
2. There is a protocol that takes αn bits for some $\alpha<1$ but any protocol requires $\Omega(n)$ bits.
3. There is a protocol that takes $\ll n$ bits.

Vote

1. Any protocol requires $n+1$ bits, hence the one given that takes $n+1$ is the best you can do.
2. There is a protocol that takes αn bits for some $\alpha<1$ but any protocol requires $\Omega(n)$ bits.
3. There is a protocol that takes $\ll n$ bits.

STUDENTS WORK IN GROUPS TO BEAT $n+1$ OR SHOW YOU CAN" ${ }^{\text {T }}$

Protocol in $\frac{n}{2}+O(1)$ bits

Protocol in $\frac{n}{2}+O(1)$ bits

$$
\text { 1. } \mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}
$$

Protocol in $\frac{n}{2}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 2}, \cdots, c_{n / 2-1} \oplus b_{n-1}$.

Protocol in $\frac{n}{2}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 2}, \cdots, c_{n / 2-1} \oplus b_{n-1}$.
3. Bob knows c_{i} 's so he now knows $b_{n / 2}, \ldots, b_{n-1}$.

Protocol in $\frac{n}{2}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 2}, \cdots, c_{n / 2-1} \oplus b_{n-1}$.
3. Bob knows c_{i} 's so he now knows $b_{n / 2}, \ldots, b_{n-1}$. Bob knows a_{i} 's and c_{i} 's so he can compute

$$
a_{n / 2} \cdots a_{n-1}+b_{n / 2} \cdots b_{n-1}+c_{n / 2} \cdots c_{n-1}=s+\text { carry } z
$$

Protocol in $\frac{n}{2}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 2}, \cdots, c_{n / 2-1} \oplus b_{n-1}$.
3. Bob knows c_{i} 's so he now knows $b_{n / 2}, \ldots, b_{n-1}$. Bob knows a_{i} 's and c_{i} 's so he can compute $a_{n / 2} \cdots a_{n-1}+b_{n / 2} \cdots b_{n-1}+c_{n / 2} \cdots c_{n-1}=s+$ carry z $s=1^{n / 2}$: Bob says (MAYBE,z). $s \neq 1^{n / 2}$: Bob says NO.

Protocol in $\frac{n}{2}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 2}, \cdots, c_{n / 2-1} \oplus b_{n-1}$.
3. Bob knows c_{i} 's so he now knows $b_{n / 2}, \ldots, b_{n-1}$. Bob knows a_{i} 's and c_{i} 's so he can compute $a_{n / 2} \cdots a_{n-1}+b_{n / 2} \cdots b_{n-1}+c_{n / 2} \cdots c_{n-1}=s+$ carry z $s=1^{n / 2}$: Bob says (MAYBE,z). $s \neq 1^{n / 2}$: Bob says NO.
4. Carol knows b_{i} 's so she now knows $c_{0}, \ldots, c_{n / 2-1}$.

Protocol in $\frac{n}{2}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 2}, \cdots, c_{n / 2-1} \oplus b_{n-1}$.
3. Bob knows c_{i} 's so he now knows $b_{n / 2}, \ldots, b_{n-1}$. Bob knows a_{i} 's and c_{i} 's so he can compute $a_{n / 2} \cdots a_{n-1}+b_{n / 2} \cdots b_{n-1}+c_{n / 2} \cdots c_{n-1}=s+$ carry z $s=1^{n / 2}$: Bob says (MAYBE,z). $s \neq 1^{n / 2}$: Bob says NO.
4. Carol knows b_{i} 's so she now knows $c_{0}, \ldots, c_{n / 2-1}$.

Carol knows the carry bit z so she can compute $a_{0} \cdots a_{n / 2}+b_{0} \cdots b_{n / 2}+c_{0} \cdots c_{n / 2}+z=t$

Protocol in $\frac{n}{2}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 2}, \cdots, c_{n / 2-1} \oplus b_{n-1}$.
3. Bob knows c_{i} 's so he now knows $b_{n / 2}, \ldots, b_{n-1}$. Bob knows a_{i} 's and c_{i} 's so he can compute $a_{n / 2} \cdots a_{n-1}+b_{n / 2} \cdots b_{n-1}+c_{n / 2} \cdots c_{n-1}=s+$ carry z $s=1^{n / 2}$: Bob says (MAYBE,z). $s \neq 1^{n / 2}$: Bob says NO.
4. Carol knows b_{i} 's so she now knows $c_{0}, \ldots, c_{n / 2-1}$.

Carol knows the carry bit z so she can compute $a_{0} \cdots a_{n / 2}+b_{0} \cdots b_{n / 2}+c_{0} \cdots c_{n / 2}+z=t$ $t=1^{n / 2}$: Carol says YES. $t \neq 1^{n / 2}$: Carol says NO.

Four People

Alice is A, Bob is B, Carol is C, Donna is D.

Four People

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length n on their foreheads.

Four People

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length n on their foreheads.
2. A's forehead has a, B 's forehead has b, \ldots..

Four People

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length n on their foreheads.
2. A's forehead has a, B 's forehead has b, \ldots..
3. They want to know if $a+b+c+d=2^{n+1}-1$.

Four People

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length n on their foreheads.
2. A's forehead has a, B 's forehead has b, \ldots..
3. They want to know if $a+b+c+d=2^{n+1}-1$.
4. Obvious Solution uses $n+1$ bits of comm. Can do better?

Four People

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length n on their foreheads.
2. A's forehead has a, B 's forehead has b, \ldots
3. They want to know if $a+b+c+d=2^{n+1}-1$.
4. Obvious Solution uses $n+1$ bits of comm. Can do better?

STUDENTS WORK IN GROUPS TO EITHER DO BETTER THAN $n+1$ OR SHOW YOU CAN" ${ }^{1}$

Protocol for 4 in $\frac{n}{3}+O(1)$ bits

Protocol for 4 in $\frac{n}{3}+O(1)$ bits

$$
\begin{aligned}
& \text { 1. } \mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}, \\
& \mathrm{D}: d_{0} \cdots d_{n-1} .
\end{aligned}
$$

Protocol for 4 in $\frac{n}{3}+O(1)$ bits

$$
\begin{aligned}
& \text { 1. A: } a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1} \\
& \text { D: } d_{0} \cdots d_{n-1} \text {. } \\
& \text { 2. A says: } c_{0} \oplus b_{n / 3-1} \oplus a_{2 n / 3-1}, \cdots, c_{n / 3-1} \oplus b_{2 n / 3-1} \oplus c_{n-1} \text {. }
\end{aligned}
$$

Protocol for 4 in $\frac{n}{3}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$,
$\mathrm{D}: d_{0} \cdots d_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 3-1} \oplus a_{2 n / 3-1}, \cdots, c_{n / 3-1} \oplus b_{2 n / 3-1} \oplus c_{n-1}$.
3. Carol can add first $1 / 3$ of the bits, sees if its $1^{n / 3}$, if its not say NO, if it is say MAYBE and the carry bit.

Protocol for 4 in $\frac{n}{3}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$, $\mathrm{D}: d_{0} \cdots d_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 3-1} \oplus a_{2 n / 3-1}, \cdots, c_{n / 3-1} \oplus b_{2 n / 3-1} \oplus c_{n-1}$.
3. Carol can add first $1 / 3$ of the bits, sees if its $1^{n / 3}$, if its not say NO, if it is say MAYBE and the carry bit.
4. Bob can add second $1 / 3$ of the bits along with the carry bit, sees if its $1^{n / 3}$, if its not say NO, if it is say MAYBE and the carry bit.

Protocol for 4 in $\frac{n}{3}+O(1)$ bits

1. $\mathrm{A}: a_{0} \cdots a_{n-1}, \quad \mathrm{~B}: b_{0} \cdots b_{n-1}, \quad \mathrm{C}: c_{0} \cdots c_{n-1}$, $\mathrm{D}: d_{0} \cdots d_{n-1}$.
2. A says: $c_{0} \oplus b_{n / 3-1} \oplus a_{2 n / 3-1}, \cdots, c_{n / 3-1} \oplus b_{2 n / 3-1} \oplus c_{n-1}$.
3. Carol can add first $1 / 3$ of the bits, sees if its $1^{n / 3}$, if its not say NO, if it is say MAYBE and the carry bit.
4. Bob can add second $1 / 3$ of the bits along with the carry bit, sees if its $1^{n / 3}$, if its not say NO, if it is say MAYBE and the carry bit.
5. Bob can add third $1 / 3$ of the bits along with the carry bit, sees if its $1^{n / 3}$, if its not say NO, if it is say YES.

k People

People are A_{1}, \ldots, A_{k}.

k People

People are A_{1}, \ldots, A_{k}.

1. A_{i} has a string of length n on their foreheads.

k People

People are A_{1}, \ldots, A_{k}.

1. A_{i} has a string of length n on their foreheads.
2. A_{i} 's forehead has a_{i}

k People

People are A_{1}, \ldots, A_{k}.

1. A_{i} has a string of length n on their foreheads.
2. A_{i} 's forehead has a_{i}
3. They want to know if $a_{1}+\cdots+a_{k}=2^{n+1}-1$.

k People

People are A_{1}, \ldots, A_{k}.

1. A_{i} has a string of length n on their foreheads.
2. A_{i} 's forehead has a_{i}
3. They want to know if $a_{1}+\cdots+a_{k}=2^{n+1}-1$.
4. Can do in $\frac{n}{k-1}+O(1)$ bits, similar to the $k=3,4$ cases.

k People

People are A_{1}, \ldots, A_{k}.

1. A_{i} has a string of length n on their foreheads.
2. A_{i} 's forehead has a_{i}
3. They want to know if $a_{1}+\cdots+a_{k}=2^{n+1}-1$.
4. Can do in $\frac{n}{k-1}+O(1)$ bits, similar to the $k=3,4$ cases.
5. Caveat: The $O(1)$ term is really $O(k)$ which matters if k is a function of n.

Final Vote and the Answer

Lets go back to 3 people. We know we can do $\frac{n}{2}+O(1)$.

Final Vote and the Answer

Lets go back to 3 people. We know we can do $\frac{n}{2}+O(1)$. 1. $\frac{n}{2}+O(1)$ is roughly optimal.

Final Vote and the Answer

Lets go back to 3 people. We know we can do $\frac{n}{2}+O(1)$.

1. $\frac{n}{2}+O(1)$ is roughly optimal.
2. There is an $O\left(\frac{n}{\log n}\right)$ protocol and it is roughly optimal.

Final Vote and the Answer

Lets go back to 3 people. We know we can do $\frac{n}{2}+O(1)$.

1. $\frac{n}{2}+O(1)$ is roughly optimal.
2. There is an $O\left(\frac{n}{\log n}\right)$ protocol and it is roughly optimal.
3. There is an $O\left(\frac{n}{\log n}\right)$ protocol, optimal UNKNOWN.

Final Vote and the Answer

Lets go back to 3 people. We know we can do $\frac{n}{2}+O(1)$.

1. $\frac{n}{2}+O(1)$ is roughly optimal.
2. There is an $O\left(\frac{n}{\log n}\right)$ protocol and it is roughly optimal.
3. There is an $O\left(\frac{n}{\log n}\right)$ protocol, optimal UNKNOWN.
4. There exists an $O\left(n^{1-\delta}\right)$ protocol and it is roughly optimal.
5. There exists an $O\left(n^{1-\delta}\right)$ protocol, optimal UNKNOWN.

VOTE!

The Answer

3 people:

- Chandra-Furst-Lipton (1983): there is an $O\left(n^{1 / 2}\right)$ protocol; lower bound $\Omega(1)$.

The Answer

3 people:

- Chandra-Furst-Lipton (1983): there is an $O\left(n^{1 / 2}\right)$ protocol; lower bound $\Omega(1)$.
- Gasarch (2006): Lower Bound $\Omega(\log \log n)$.
- Nothing else is known.
k people:
- Gasarch 2006: there is an $O\left(n^{1 /\left(\log _{2}(k-1)\right.}\right)$ protocol. (A more careful analysis of Chandra-Furst-Lipton protocol.)
- Chandra-Furst-Lipton, lower bound $\Omega(1)$.
- Nothing else is known.

Open Problem

For 3 people we have:

Open Problem

For 3 people we have:

1. Elementary proof: Protocol $\frac{n}{2}+O(1)$.

Open Problem

For 3 people we have:

1. Elementary proof: Protocol $\frac{n}{2}+O(1)$.
2. Hard proof: Protocol $O\left(n^{1 / 2}\right)$.

Open Problem

For 3 people we have:

1. Elementary proof: Protocol $\frac{n}{2}+O(1)$.
2. Hard proof: Protocol $O\left(n^{1 / 2}\right)$.

Open Find an elementary proof for a protocol, $<\frac{n}{2}+O(1)$.

Open Problem

For 3 people we have:

1. Elementary proof: Protocol $\frac{n}{2}+O(1)$.
2. Hard proof: Protocol $O\left(n^{1 / 2}\right)$.

Open Find an elementary proof for a protocol, $<\frac{n}{2}+O(1)$.

Open Similar questions for 4 people, 5 people, etc.

