Homework 10

250H
(30 points) Recall the set ONEFOUR from a prior HW:

\[\{ n : n \equiv 1 \pmod{4} \} . \]

Recall also that some numbers are prime-in-ONEFOUR but not prime normally, such as 9.

FIND a number in ONEFOUR that factors into primes-in-ONEFOUR in MORE THAN one way. (Hence Unique Factorization does not hold in ONEFOUR.)

You may use a program for this, though there is a way to find such a number without a program.
If \(x \equiv 3 \pmod{4} \) and \(y \equiv 3 \pmod{4} \) then

\[xy \equiv 3 \times 3 \equiv 1 \pmod{4}. \]
If \(x \equiv 3 \pmod{4} \) and \(y \equiv 3 \pmod{4} \) then
\[
x y \equiv 3 \times 3 \equiv 1 \pmod{4}.
\]
Hence numbers of the form \(xy \) are primes in ONEFOUR.
We multiply together four such numbers:

\[
3 \times 7 \times 11 = 3465
\]
Note that

- $3465 = 4 \times 4 \times 866 + 1$, hence 3465 is in ONEFOUR.
- $3465 = (3 \times 7) \times (11) = 21 \times 165$. Both 21 and 165 are PRIMES IN ONEFOUR.
- $3465 = (3 \times 11) \times (7) = 33 \times 105$. Both 33 and 105 are PRIMES IN ONEFOUR.

Hence 3465 factors two different ways.