## Homework 10

250H
(30 points) Recall the set ONEFOUR from a prior HW:

$$
\{n: n \equiv 1 \quad(\bmod 4)\} .
$$

Recall also that some numbers are prime-in-ONEFOUR but not prime normally, such as 9 .

FIND a number in ONEFOUR that factors into primes-in-ONEFOUR in MORE THAN one way. (Hence Unique Factorization does not hold in ONEFOUR.)

You may use a program for this, though there is a way to find such a number without a program

$$
\text { If } x \equiv 3(\bmod 4) \text { and } y \equiv 3(\bmod 4) \text { then }
$$

$$
x y \equiv 3 \times 3 \equiv 1(\bmod 4) .
$$

If $x \equiv 3(\bmod 4)$ and $y \equiv 3(\bmod 4)$ then $x y \equiv 3 \times 3 \equiv 1(\bmod 4)$.
Hence numbers of the form $x y$ are primes in ONEFOUR. We multiply together four such numbers:

$$
3 \times 7 \times 11=3465
$$

Note that

- $3465=4 \times 4 \times 866+1$, hence 3465 is in ONEFOUR.
- $3465=(3 \times 7) \times(11)=21 \times 165$. Both 21 and 165 are PRIMES IN ONEFOUR.
- $3465=(3 \times 11) \times(7)=33 \times 105$. Both 33 and 105 are PRIMES IN ONEFOUR.

Hence 3465 factors two different ways.

