Provably Concrete
Transcendental Numbers:
Liouville Numbers
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Key to e ¢ Q

What was it about e that made the proof that e ¢ Q work?

We used that e had good rational approximations.

1. If « has good rational approximations then « is irrational.

2. If « has great rational approximations then « is
transcendental.

We will define a number that has great rational approximations
and then show that all such numbers are transcendental.
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« = 0.100100000010000000000000000000000001 - - -

(In binary.)

The pattern is

1 followed by 2! Q’s, then

1 followed by 3! 0Q's, then
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a has Great Rational Approximations

=1
azzﬁ

Jj=0

a __ n 1
Let b= ijo ik

Note The sum can be written with denom 2™ so we take b = 2™,

a 1 1 1
a-T=> o = o) T ogmray T T
j=n+1

1 1 1
< Z 2J: (D=1 = pntn — pn
Jj=(n+1)!

Upshot For all n there exists a, b such that o — 2| < L.
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Def L is a Liouville number if, for all n, there exists a, b € Z such
that

I a# 3.
2.

Notation We will call them L-numbers.



Proof that All L-numbers
are Transcendental
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Warmup: Proof that L-Numbers are Irrational

Let o be an L-number.
Assume, by way of contradiction, that o € Q, so o = 3.
We will use the definition of L-numbers with a well chosen n.

Let n be such that % > znl,l.

By the Def of L-number there exists a, b such that { # 5 and:

a3l L
b| = b
But:
al _le_al 1t 1 1
B T |d b= bd ~ 20-1p = bn

This is a contradiction.
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A Variant of the MVT

MVT Let p be a function from R to R that is continuous on [c, d]
and differential on [c, d|.

Let M be the max of p’(x) on [c,d].

Then Je € (a, b) such that

d—c| >

Important L-numbers are all about |or — 7| being small.
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The L-Numbers are Transcendental

Thm If a is an L-number then « is transcendental.
Assume, by way of contradiction, that « is a root of p(x) € Z[x].
Let n be the degree of p(x).

By Def of L-number with param n+ r (we pick r later):

a 1
O‘_B < prtr

(3a, b, € Z)[

Plan

(1) |o — | SMALL by def of L-number.

(2) |p(a) — p(Z)| BIG by properties of Z[x].

(3) By MVT and (2), | — 7| BIG, contradicting point (1).
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Dealing with |a — 7| Being Small

1
bn+r

We want
We want

to NOT be one of the other roots of p(x).
to BE within 1 of a.

oo oL

ai,...,0n_1: other roots of p(x).
M: the max value |p’(x)| takes on [aw — 1, v + 1] (we use later).
Let

A< min{l

1
,M,]a—a1|,...,]a—a,,_1|

a
o — —

b
then 2 € [a —1,a+ 1] and 7 # a;.

<A
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Dealing with |a — 7| Being Small

We have
a 1
o — [—J < prtr
We have not chosen r yet.
We want
a
——| <A
“7b

Take r such that A < #.



Recap

a is an L-number that satisfies a poly over Z[x] of degree n.



Recap

a is an L-number that satisfies a poly over Z[x] of degree n.
(1) There exists a, b such that



Recap

a is an L-number that satisfies a poly over Z[x] of degree n.
(1) There exists a, b such that

11 1
>|Oé— |<bn+r§bnbr_bnM

Where M = maxa_1§x§a+1[Pl(X)]-



Recap

a is an L-number that satisfies a poly over Z[x] of degree n.

(1) There exists a, b such that
>la-fl<gr<py <mm
Where M = maxa—1<x<a+1[p'(X)].

» £ is not a root.



Recap

a is an L-number that satisfies a poly over Z[x] of degree n.
(1) There exists a, b such that

>|Oé— |<bn+r§[;ln[;lr_ﬁ
Where M = maxa_1§x§a+1[Pl(X)]-

> % is not a root.

> 2cfa—-1,a+1]
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By Variant of MVT

Recall the variant of MVT:

. ’p(d>—p(c)

where M is the max of p’(x) on [c, d]
Plugin d = a and ¢ = § to get

a| L [ple) —p(3)
b| — M
Since p(a) = 0:
al _ |p(3)
S
“7b —’ M
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Continuing to get Lower Bound on |a — {|

_al |e(3)
b M

Key Since p € Z[x] is of degree n and % is not a root of p,

o(5)]= 5

> ’

Hence
a—ﬁ > 1
b| — | Mbn
But we have
a 1 < 1
B = b | S Mbn

That is the contradiction.



