Provably Concrete Transcendental Numbers: Liouville Numbers

Key to $e \notin \mathbb{Q}$

What was it about e that made the proof that $e \notin \mathbb{Q}$ work?

Key to $e \notin \mathbb{Q}$

What was it about e that made the proof that $e \notin \mathbb{Q}$ work?
We used that e had good rational approximations.

Key to $e \notin \mathbb{Q}$

What was it about e that made the proof that $e \notin \mathbb{Q}$ work?
We used that e had good rational approximations.

1. If α has good rational approximations then α is irrational.

Key to $e \notin \mathbb{Q}$

What was it about e that made the proof that $e \notin \mathbb{Q}$ work?
We used that e had good rational approximations.

1. If α has good rational approximations then α is irrational.
2. If α has great rational approximations then α is transcendental.

Key to $e \notin \mathbb{Q}$

What was it about e that made the proof that $e \notin \mathbb{Q}$ work?
We used that e had good rational approximations.

1. If α has good rational approximations then α is irrational.
2. If α has great rational approximations then α is transcendental.
We will define a number that has great rational approximations and then show that all such numbers are transcendental.

A Number with Great Rational Approximations

Let

$$
\alpha=0.100100000010000000000000000000000001 \cdots
$$

(In binary.)
The pattern is

A Number with Great Rational Approximations

Let

$$
\alpha=0.100100000010000000000000000000000001 \cdots
$$

(In binary.)
The pattern is
1 followed by 2 ! 0 's, then

A Number with Great Rational Approximations

Let

$$
\alpha=0.100100000010000000000000000000000001 \cdots
$$

(In binary.)
The pattern is
1 followed by 2 ! 0 's, then
1 followed by 3! 0's, then

A Number with Great Rational Approximations

Let

$$
\alpha=0.100100000010000000000000000000000001 \cdots
$$

(In binary.)
The pattern is
1 followed by 2 ! 0 's, then
1 followed by 3! 0's, then
1 followed by 4! 0's, then...

α has Great Rational Approximations

$$
a=\sum_{i=1}^{\infty} \frac{1}{x^{2}}
$$

α has Great Rational Approximations

$$
\alpha=\sum_{j=0}^{\infty} \frac{1}{2^{j!}}
$$

Let $\frac{a}{b}=\sum_{j=0}^{n} \frac{1}{2^{j!}}$.

α has Great Rational Approximations

$$
\alpha=\sum_{j=0}^{\infty} \frac{1}{2^{j!}}
$$

Let $\frac{a}{b}=\sum_{j=0}^{n} \frac{1}{2^{j!}}$.
Note The sum can be written with denom $2^{n!}$ so we take $b=2^{n!}$.

α has Great Rational Approximations

$$
\alpha=\sum_{j=0}^{\infty} \frac{1}{2^{j!}}
$$

Let $\frac{a}{b}=\sum_{j=0}^{n} \frac{1}{2^{j!}}$.
Note The sum can be written with denom $2^{n!}$ so we take $b=2^{n!}$.

$$
\alpha-\frac{a}{b}=\sum_{j=n+1}^{\infty} \frac{1}{2^{j!}}=\frac{1}{2^{(n+1)!}}+\frac{1}{2^{(n+2)!}}+\cdots+
$$

α has Great Rational Approximations

$$
\alpha=\sum_{j=0}^{\infty} \frac{1}{2^{j!}}
$$

Let $\frac{a}{b}=\sum_{j=0}^{n} \frac{1}{2^{j!}}$.
Note The sum can be written with denom $2^{n!}$ so we take $b=2^{n!}$.

$$
\begin{gathered}
\alpha-\frac{a}{b}=\sum_{j=n+1}^{\infty} \frac{1}{2^{j!}}=\frac{1}{2^{(n+1)!}}+\frac{1}{2^{(n+2)!}}+\cdots+ \\
\quad<\sum_{j=(n+1)!}^{\infty} \frac{1}{2^{j}}=\frac{1}{2^{(n+1)!-1}} \leq \frac{1}{2^{n!\cdot n}}=\frac{1}{b^{n}}
\end{gathered}
$$

α has Great Rational Approximations

$$
\alpha=\sum_{j=0}^{\infty} \frac{1}{2^{j!}}
$$

Let $\frac{a}{b}=\sum_{j=0}^{n} \frac{1}{2^{j!}}$.
Note The sum can be written with denom $2^{n!}$ so we take $b=2^{n!}$.

$$
\begin{gathered}
\alpha-\frac{a}{b}=\sum_{j=n+1}^{\infty} \frac{1}{2^{j!}}=\frac{1}{2^{(n+1)!}}+\frac{1}{2^{(n+2)!}}+\cdots+ \\
\quad<\sum_{j=(n+1)!}^{\infty} \frac{1}{2^{j}}=\frac{1}{2^{(n+1)!-1}} \leq \frac{1}{2^{n!\cdot n}}=\frac{1}{b^{n}}
\end{gathered}
$$

Upshot For all n there exists a, b such that $\left|\alpha-\frac{a}{b}\right| \leq \frac{1}{b^{n}}$.

Liouville Numbers

Def L is a Liouville number if, for all n, there exists $a, b \in \mathbb{Z}$ such that

Liouville Numbers

Def L is a Liouville number if, for all n, there exists $a, b \in \mathbb{Z}$ such that

1. $\alpha \neq \frac{a}{b}$.

Liouville Numbers

Def L is a Liouville number if, for all n, there exists $a, b \in \mathbb{Z}$ such that

1. $\alpha \neq \frac{a}{b}$.
2.

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n}} .
$$

Liouville Numbers

Def L is a Liouville number if, for all n, there exists $a, b \in \mathbb{Z}$ such that

1. $\alpha \neq \frac{a}{b}$.
2.

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n}} .
$$

Notation We will call them L-numbers.

Proof that All L-numbers are Transcendental

Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.

Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.
Assume, by way of contradiction, that $\alpha \in \mathbb{Q}$, so $\alpha=\frac{c}{d}$.

Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.
Assume, by way of contradiction, that $\alpha \in \mathbb{Q}$, so $\alpha=\frac{c}{d}$.
We will use the definition of L-numbers with a well chosen n.

Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.
Assume, by way of contradiction, that $\alpha \in \mathbb{Q}$, so $\alpha=\frac{c}{d}$.
We will use the definition of L-numbers with a well chosen n.
Let n be such that $\frac{1}{d}>\frac{1}{2^{n-1}}$.

Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.
Assume, by way of contradiction, that $\alpha \in \mathbb{Q}$, so $\alpha=\frac{c}{d}$.
We will use the definition of L-numbers with a well chosen n.
Let n be such that $\frac{1}{d}>\frac{1}{2^{n-1}}$.
By the Def of L-number there exists a, b such that $\frac{a}{b} \neq \frac{c}{d}$ and:

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n}}
$$

Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.
Assume, by way of contradiction, that $\alpha \in \mathbb{Q}$, so $\alpha=\frac{c}{d}$.
We will use the definition of L-numbers with a well chosen n.
Let n be such that $\frac{1}{d}>\frac{1}{2^{n-1}}$.
By the Def of L-number there exists a, b such that $\frac{a}{b} \neq \frac{c}{d}$ and:

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n}}
$$

But:

$$
\left|\alpha-\frac{a}{b}\right|=\left|\frac{c}{d}-\frac{a}{b}\right| \geq \frac{1}{b d}>\frac{1}{2^{n-1} b} \geq \frac{1}{b^{n}}
$$

Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.
Assume, by way of contradiction, that $\alpha \in \mathbb{Q}$, so $\alpha=\frac{c}{d}$.
We will use the definition of L-numbers with a well chosen n.
Let n be such that $\frac{1}{d}>\frac{1}{2^{n-1}}$.
By the Def of L-number there exists a, b such that $\frac{a}{b} \neq \frac{c}{d}$ and:

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n}}
$$

But:

$$
\left|\alpha-\frac{a}{b}\right|=\left|\frac{c}{d}-\frac{a}{b}\right| \geq \frac{1}{b d}>\frac{1}{2^{n-1} b} \geq \frac{1}{b^{n}}
$$

This is a contradiction.

The Mean Value Theorem (MVT)

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on (c, d). Then $\exists e \in(c, d)$ such that

$$
p^{\prime}(e)=\frac{p(d)-p(c)}{d-c}
$$

The Mean Value Theorem (MVT)

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on (c, d). Then $\exists e \in(c, d)$ such that

$$
p^{\prime}(e)=\frac{p(d)-p(c)}{d-c}
$$

For intuition see this picture:

https://tutorial.math.lamar.edu/classes/calci/
MeanValueTheorem.aspx

A Variant of the MVT

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on $[c, d]$.

A Variant of the MVT

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on $[c, d]$.
Let M be the max of $p^{\prime}(x)$ on $[c, d]$.

A Variant of the MVT

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on $[c, d]$.
Let M be the max of $p^{\prime}(x)$ on $[c, d]$.
Then $\exists e \in(a, b)$ such that

$$
p^{\prime}(e)=\frac{p(d)-p(c)}{d-c}
$$

A Variant of the MVT

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on $[c, d]$.
Let M be the max of $p^{\prime}(x)$ on $[c, d]$.
Then $\exists e \in(a, b)$ such that

$$
\begin{gathered}
p^{\prime}(e)=\frac{p(d)-p(c)}{d-c} . \\
d-c=\frac{p(d)-p(c)}{p^{\prime}(e)} \geq \frac{p(d)-p(c)}{M}
\end{gathered}
$$

A Variant of the MVT

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on $[c, d]$.
Let M be the max of $p^{\prime}(x)$ on $[c, d]$.
Then $\exists e \in(a, b)$ such that

$$
\begin{gathered}
p^{\prime}(e)=\frac{p(d)-p(c)}{d-c} . \\
d-c=\frac{p(d)-p(c)}{p^{\prime}(e)} \geq \frac{p(d)-p(c)}{M} \\
|d-c| \geq\left|\frac{p(d)-p(c)}{M}\right|
\end{gathered}
$$

A Variant of the MVT

MVT Let p be a function from \mathbb{R} to \mathbb{R} that is continuous on $[c, d]$ and differential on $[c, d]$.
Let M be the max of $p^{\prime}(x)$ on $[c, d]$.
Then $\exists e \in(a, b)$ such that

$$
\begin{gathered}
p^{\prime}(e)=\frac{p(d)-p(c)}{d-c} . \\
d-c=\frac{p(d)-p(c)}{p^{\prime}(e)} \geq \frac{p(d)-p(c)}{M} \\
|d-c| \geq\left|\frac{p(d)-p(c)}{M}\right|
\end{gathered}
$$

Important L-numbers are all about $\left|\alpha-\frac{a}{b}\right|$ being small.

The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental.

The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental. Assume, by way of contradiction, that α is a root of $p(x) \in \mathbb{Z}[x]$. Let n be the degree of $p(x)$.

The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental.
Assume, by way of contradiction, that α is a root of $p(x) \in \mathbb{Z}[x]$. Let n be the degree of $p(x)$.
By Def of L-number with param $n+r$ (we pick r later):

$$
(\exists a, b, \in \mathbb{Z})\left[\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}\right]
$$

The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental.
Assume, by way of contradiction, that α is a root of $p(x) \in \mathbb{Z}[x]$. Let n be the degree of $p(x)$.
By Def of L-number with param $n+r$ (we pick r later):

$$
(\exists a, b, \in \mathbb{Z})\left[\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}\right]
$$

Plan

The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental.
Assume, by way of contradiction, that α is a root of $p(x) \in \mathbb{Z}[x]$. Let n be the degree of $p(x)$.
By Def of L-number with param $n+r$ (we pick r later):

$$
(\exists a, b, \in \mathbb{Z})\left[\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}\right]
$$

Plan
(1) $\left|\alpha-\frac{a}{b}\right|$ SMALL by def of L-number.

The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental.
Assume, by way of contradiction, that α is a root of $p(x) \in \mathbb{Z}[x]$. Let n be the degree of $p(x)$.
By Def of L-number with param $n+r$ (we pick r later):

$$
(\exists a, b, \in \mathbb{Z})\left[\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}\right]
$$

Plan
(1) $\left|\alpha-\frac{a}{b}\right|$ SMALL by def of L-number.
(2) $\left|p(\alpha)-p\left(\frac{a}{b}\right)\right|$ BIG by properties of $\mathbb{Z}[x]$.

The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental.
Assume, by way of contradiction, that α is a root of $p(x) \in \mathbb{Z}[x]$. Let n be the degree of $p(x)$.
By Def of L-number with param $n+r$ (we pick r later):

$$
(\exists a, b, \in \mathbb{Z})\left[\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}\right]
$$

Plan
(1) $\left|\alpha-\frac{a}{b}\right|$ SMALL by def of L-number.
(2) $\left|p(\alpha)-p\left(\frac{a}{b}\right)\right|$ BIG by properties of $\mathbb{Z}[x]$.
(3) By MVT and (2), $\left|\alpha-\frac{a}{b}\right|$ BIG, contradicting point (1).

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We want $\frac{a}{b}$ to NOT be one of the other roots of $p(x)$.

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We want $\frac{a}{b}$ to NOT be one of the other roots of $p(x)$.
We want $\frac{a}{b}$ to BE within 1 of α.

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We want $\frac{a}{b}$ to NOT be one of the other roots of $p(x)$.
We want $\frac{a}{b}$ to BE within 1 of α.
$\alpha_{1}, \ldots, \alpha_{n-1}$: other roots of $p(x)$.

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We want $\frac{a}{b}$ to NOT be one of the other roots of $p(x)$.
We want $\frac{a}{b}$ to BE within 1 of α.
$\alpha_{1}, \ldots, \alpha_{n-1}$: other roots of $p(x)$.
M : the max value $\left|p^{\prime}(x)\right|$ takes on $[\alpha-1, \alpha+1]$ (we use later).

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We want $\frac{a}{b}$ to NOT be one of the other roots of $p(x)$.
We want $\frac{a}{b}$ to BE within 1 of α.
$\alpha_{1}, \ldots, \alpha_{n-1}$: other roots of $p(x)$.
M : the max value $\left|p^{\prime}(x)\right|$ takes on $[\alpha-1, \alpha+1]$ (we use later). Let

$$
A<\min \left\{1, \frac{1}{M},\left|\alpha-\alpha_{1}\right|, \ldots,\left|\alpha-\alpha_{n-1}\right|\right\}
$$

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We want $\frac{a}{b}$ to NOT be one of the other roots of $p(x)$.
We want $\frac{a}{b}$ to BE within 1 of α.
$\alpha_{1}, \ldots, \alpha_{n-1}$: other roots of $p(x)$.
M : the max value $\left|p^{\prime}(x)\right|$ takes on $[\alpha-1, \alpha+1]$ (we use later). Let

$$
A<\min \left\{1, \frac{1}{M},\left|\alpha-\alpha_{1}\right|, \ldots,\left|\alpha-\alpha_{n-1}\right|\right\}
$$

If

$$
\left|\alpha-\frac{a}{b}\right|<A
$$

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We want $\frac{a}{b}$ to NOT be one of the other roots of $p(x)$.
We want $\frac{a}{b}$ to BE within 1 of α.
$\alpha_{1}, \ldots, \alpha_{n-1}$: other roots of $p(x)$.
M : the max value $\left|p^{\prime}(x)\right|$ takes on $[\alpha-1, \alpha+1]$ (we use later). Let

$$
A<\min \left\{1, \frac{1}{M},\left|\alpha-\alpha_{1}\right|, \ldots,\left|\alpha-\alpha_{n-1}\right|\right\}
$$

If

$$
\left|\alpha-\frac{a}{b}\right|<A
$$

then $\frac{a}{b} \in[\alpha-1, \alpha+1]$ and $\frac{a}{b} \neq \alpha_{i}$.

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

We have

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

We have

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}}
$$

We have not chosen r yet.

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

We have

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}} .
$$

We have not chosen r yet.
We want

$$
\left|\alpha-\frac{a}{b}\right|<A .
$$

Dealing with $\left|\alpha-\frac{a}{b}\right|$ Being Small

We have

$$
\left|\alpha-\frac{a}{b}\right|<\frac{1}{b^{n+r}} .
$$

We have not chosen r yet.
We want

$$
\left|\alpha-\frac{a}{b}\right|<A .
$$

Take r such that $A<\frac{1}{b^{r}}$.

Recap

α is an L-number that satisfies a poly over $\mathbb{Z}[x]$ of degree n.

Recap

α is an L-number that satisfies a poly over $\mathbb{Z}[x]$ of degree n.
(1) There exists a, b such that

Recap

α is an L-number that satisfies a poly over $\mathbb{Z}[x]$ of degree n.
(1) There exists a, b such that

- $\left|\alpha-\frac{a}{b}\right| \leq \frac{1}{b^{n+r}} \leq \frac{1}{b^{n}} \frac{1}{b^{r}} \leq \frac{1}{b^{n} M}$ where $M=\max _{\alpha-1 \leq x \leq \alpha+1}\left[p^{\prime}(x)\right]$.

Recap

α is an L-number that satisfies a poly over $\mathbb{Z}[x]$ of degree n.
(1) There exists a, b such that

- $\left|\alpha-\frac{a}{b}\right| \leq \frac{1}{b^{n+r}} \leq \frac{1}{b^{n}} \frac{1}{b^{r}} \leq \frac{1}{b^{n} M}$ where $M=\max _{\alpha-1 \leq x \leq \alpha+1}\left[p^{\prime}(x)\right]$.
- $\frac{a}{b}$ is not a root.

Recap

α is an L-number that satisfies a poly over $\mathbb{Z}[x]$ of degree n.
(1) There exists a, b such that

- $\left|\alpha-\frac{a}{b}\right| \leq \frac{1}{b^{n+r}} \leq \frac{1}{b^{n}} \frac{1}{b^{r}} \leq \frac{1}{b^{n} M}$ where $M=\max _{\alpha-1 \leq x \leq \alpha+1}\left[p^{\prime}(x)\right]$.
- $\frac{a}{b}$ is not a root.
- $\frac{a}{b} \in[\alpha-1, \alpha+1]$,

By Variant of MVT

Recall the variant of MVT:

By Variant of MVT

Recall the variant of MVT:

$$
|d-c| \geq\left|\frac{p(d)-p(c)}{M}\right|
$$

where M is the max of $p^{\prime}(x)$ on $[c, d]$

By Variant of MVT

Recall the variant of MVT:

$$
|d-c| \geq\left|\frac{p(d)-p(c)}{M}\right|
$$

where M is the max of $p^{\prime}(x)$ on $[c, d]$
Plug in $d=\alpha$ and $c=\frac{a}{b}$ to get

By Variant of MVT

Recall the variant of MVT:

$$
|d-c| \geq\left|\frac{p(d)-p(c)}{M}\right|
$$

where M is the max of $p^{\prime}(x)$ on $[c, d]$
Plug in $d=\alpha$ and $c=\frac{a}{b}$ to get

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p(\alpha)-p\left(\frac{a}{b}\right)}{M}\right|
$$

By Variant of MVT

Recall the variant of MVT:

$$
|d-c| \geq\left|\frac{p(d)-p(c)}{M}\right|
$$

where M is the max of $p^{\prime}(x)$ on $[c, d]$
Plug in $d=\alpha$ and $c=\frac{a}{b}$ to get

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p(\alpha)-p\left(\frac{a}{b}\right)}{M}\right|
$$

Since $p(\alpha)=0$:

By Variant of MVT

Recall the variant of MVT:

$$
|d-c| \geq\left|\frac{p(d)-p(c)}{M}\right|
$$

where M is the max of $p^{\prime}(x)$ on $[c, d]$
Plug in $d=\alpha$ and $c=\frac{a}{b}$ to get

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p(\alpha)-p\left(\frac{a}{b}\right)}{M}\right|
$$

Since $p(\alpha)=0$:

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p\left(\frac{a}{b}\right)}{M}\right|
$$

Continuing to get Lower Bound on $\left|\alpha-\frac{a}{b}\right|$

Continuing to get Lower Bound on $\left|\alpha-\frac{a}{b}\right|$

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p\left(\frac{a}{b}\right)}{M}\right|
$$

Continuing to get Lower Bound on $\left|\alpha-\frac{a}{b}\right|$

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p\left(\frac{a}{b}\right)}{M}\right|
$$

Key Since $p \in \mathbb{Z}[x]$ is of degree n and $\frac{a}{b}$ is not a root of p,

$$
\left|p\left(\frac{a}{b}\right)\right| \geq \frac{1}{b^{n}}
$$

Continuing to get Lower Bound on $\left|\alpha-\frac{a}{b}\right|$

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p\left(\frac{a}{b}\right)}{M}\right|
$$

Key Since $p \in \mathbb{Z}[x]$ is of degree n and $\frac{a}{b}$ is not a root of p,

$$
\left|p\left(\frac{a}{b}\right)\right| \geq \frac{1}{b^{n}}
$$

Hence

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{1}{M b^{n}}\right|
$$

Continuing to get Lower Bound on $\left|\alpha-\frac{a}{b}\right|$

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{p\left(\frac{a}{b}\right)}{M}\right|
$$

Key Since $p \in \mathbb{Z}[x]$ is of degree n and $\frac{a}{b}$ is not a root of p,

$$
\left|p\left(\frac{a}{b}\right)\right| \geq \frac{1}{b^{n}}
$$

Hence

$$
\left|\alpha-\frac{a}{b}\right| \geq\left|\frac{1}{M b^{n}}\right|
$$

But we have

$$
\left|\alpha-\frac{a}{b}\right| \leq\left|\frac{1}{b^{n+r}}\right|<\frac{1}{M b^{n}}
$$

That is the contradiction.

