
Provably Concrete
Transcendental Numbers:

Liouville Numbers



Key to e /∈ Q

What was it about e that made the proof that e /∈ Q work?

We used that e had good rational approximations.

1. If α has good rational approximations then α is irrational.

2. If α has great rational approximations then α is
transcendental.

We will define a number that has great rational approximations
and then show that all such numbers are transcendental.
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A Number with Great Rational Approximations

Let

α = 0.100100000010000000000000000000000001 · · ·

(In binary.)
The pattern is

1 followed by 2! 0’s, then

1 followed by 3! 0’s, then

1 followed by 4! 0’s, then . . .
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α has Great Rational Approximations

α =
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j=0

1

2j!
.

Let a
b =

∑n
j=0

1
2j!
.

Note The sum can be written with denom 2n! so we take b = 2n!.

α− a

b
=
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j=n+1

1

2j!
=

1

2(n+1)!
+

1

2(n+2)!
+ · · ·+

<
∞∑

j=(n+1)!

1

2j
=

1

2(n+1)!−1 ≤
1

2n!·n
=

1

bn

Upshot For all n there exists a, b such that |α− a
b | ≤

1
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Liouville Numbers

Def L is a Liouville number if, for all n, there exists a, b ∈ Z such
that

1. α 6= a
b .

2. ∣∣∣∣α− a

b

∣∣∣∣ < 1

bn
.

Notation We will call them L-numbers.
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Proof that All L-numbers
are Transcendental



Warmup: Proof that L-Numbers are Irrational

Let α be an L-number.

Assume, by way of contradiction, that α ∈ Q, so α = c
d .

We will use the definition of L-numbers with a well chosen n.

Let n be such that 1
d >

1
2n−1 .

By the Def of L-number there exists a, b such that a
b 6=

c
d and:∣∣∣∣α− a

b

∣∣∣∣ < 1

bn

But: ∣∣∣∣α− a

b

∣∣∣∣ =

∣∣∣∣ cd − a

b

∣∣∣∣ ≥ 1

bd
>

1

2n−1b
≥ 1

bn

This is a contradiction.
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The Mean Value Theorem (MVT)
MVT Let p be a function from R to R that is continuous on [c, d ]
and differential on (c , d). Then ∃e ∈ (c , d) such that

p′(e) =
p(d)− p(c)

d − c
.

For intuition see this picture:

https://tutorial.math.lamar.edu/classes/calci/

MeanValueTheorem.aspx

https://tutorial.math.lamar.edu/classes/calci/MeanValueTheorem.aspx
https://tutorial.math.lamar.edu/classes/calci/MeanValueTheorem.aspx
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A Variant of the MVT

MVT Let p be a function from R to R that is continuous on [c, d ]
and differential on [c , d ].

Let M be the max of p′(x) on [c , d ].
Then ∃e ∈ (a, b) such that

p′(e) =
p(d)− p(c)

d − c
.

d − c =
p(d)− p(c)

p′(e)
≥ p(d)− p(c)

M

|d − c | ≥
∣∣∣∣p(d)− p(c)

M

∣∣∣∣
Important L-numbers are all about |α− a

b | being small.
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The L-Numbers are Transcendental

Thm If α is an L-number then α is transcendental.

Assume, by way of contradiction, that α is a root of p(x) ∈ Z[x ].
Let n be the degree of p(x).

By Def of L-number with param n + r (we pick r later):

(∃a, b,∈ Z)

[∣∣∣∣α− a

b

∣∣∣∣ < 1

bn+r

]

Plan
(1) |α− a

b | SMALL by def of L-number.
(2) |p(α)− p( a

b )| BIG by properties of Z[x ].
(3) By MVT and (2), |α− a

b | BIG, contradicting point (1).
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Dealing with |α− a
b | Being Small

∣∣∣∣α− a

b

∣∣∣∣ < 1

bn+r

We want a
b to NOT be one of the other roots of p(x).

We want a
b to BE within 1 of α.

α1, . . . , αn−1: other roots of p(x).
M: the max value |p′(x)| takes on [α− 1, α + 1] (we use later).
Let

A < min

{
1,

1

M
, |α− α1|, . . . , |α− αn−1|

}
If ∣∣∣∣α− a

b

∣∣∣∣ < A

then a
b ∈ [α− 1, α + 1] and a

b 6= αi .
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α is an L-number that satisfies a poly over Z[x ] of degree n.

(1) There exists a, b such that
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1
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where M = maxα−1≤x≤α+1[p′(x)].

I a
b is not a root.

I a
b ∈ [α− 1, α + 1],
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By Variant of MVT

Recall the variant of MVT:

|d − c | ≥
∣∣∣∣p(d)− p(c)

M

∣∣∣∣
where M is the max of p′(x) on [c , d ]

Plug in d = α and c = a
b to get∣∣∣∣α− a

b

∣∣∣∣ ≥ ∣∣∣∣p(α)− p( a
b )

M

∣∣∣∣
Since p(α) = 0: ∣∣∣∣α− a

b

∣∣∣∣ ≥ ∣∣∣∣p( a
b )
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Continuing to get Lower Bound on |α− a
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