MiniMax and Alpha Beta Pruning

CMSC 250H
Combinatorial Search

- Search algorithms that solve a particular problem by using large solution spaces
 - A* Search
 - Minimax
 - Alpha Beta pruning
- At each step, the algorithm looks at all possible combinations of decisions
Game Tree

MAX (x)

MIN (o)

MAX (x)

MIN (o)

TERMINAL

Utility -1 0 +1
Tic Tac Toe

- How many ways can you make the first move?
 - 9
- How many ways can a game of Tic-Tac-Toe be played?
 - 255,168
- The game tree will have 255,168 leaves
MiniMax

- Algorithm used in AI, Decision Theory, Game Theory, Stats, and Philosophy
 - Combinatorial Game Theory: Gives Game Solutions
- Idea: Minimize Loss in Worst Case
- Uses Recursion or Backtracking to make a Perfect Choice
- Slow!
 - Needs to visit every node
MiniMax
MiniMax
MiniMax

Max

Min

Max

Min

4

-4

0

3

4

-9

3
MiniMax

Max

Min

Max

Min
MiniMax
Bigger Example
Bigger Example
Tree Traversal

Pre-Order: Left Side of Bubble
{1, 2, 4, 5, 3, 6, 7}

In-Order: Bottom of Bubble
{4, 2, 5, 1, 6, 3, 7}

Post-Order: Right Side of Bubble
{4, 5, 2, 6, 7, 3, 1}
Alpha Beta Pruning

- Makes MiniMax more efficient
- If we search down the whole tree, the number of states is exponential to the depth of the tree
- Alpha Beta Pruning cuts away leaves when traversing tree
- Stops evaluating a state when at least one possibility has been found to prove worse than a previous found move
- Returns the same value that MiniMax would produce
- Prunes away branches that do not influence final decision
- In the tuple \([\alpha, \beta]\)
 - Maximize \(\alpha\)
 - Minimize \(\beta\)
Alpha Beta Pruning
Alpha Beta Pruning
Alpha Beta Pruning

(c) [3, +∞]

[3, 3]

3 12 8
Alpha Beta Pruning
Alpha Beta Pruning

(e)
Alpha Beta Pruning
Bigger Example
Bigger Example
maxValue(state, α, β)
 If (Terminal State)
 Return value
 Else
 For each child
 If (Player 2’s turn)
 α = max(α, minValue(state, α, β))
 If (α ≥ β)
 return β
 Else
 β = min(β, maxValue(state, α, β))
 Return α
 Return α

minValue(state, α, β)
 If (Terminal State)
 Return value
 Else
 For each child
 If (Player 1’s turn)
 β = min(β, maxValue(state, α, β))
 If (β ≤ α)
 return α
 Else
 α = max(α, minValue(state, α, β))
 Return β
 Return α
MiniMax vs. Alpha Beta Pruning Runtime

- **MiniMax**
 - Runtime: $O(b^n)$
 - Space: $O(bh)$

- **Alpha Beta Pruning**
 - Runtime:
 - Worst-Case: $O(b^n)$
 - Best-Case: $O(b^{h/2})$
 - Space: $O(bh)$

Why is the Worst-Case Runtime equal to MiniMax?

$b = \text{Branching Factor}$
$h = \text{Height of the Tree}$
MiniMax vs. Alpha Beta Pruning Runtime

- **MiniMax**
 - Runtime: $O(b^h)$
 - Space: $O(bh)$

- **Alpha Beta Pruning**
 - Runtime:
 - Worst-Case: $O(b^h)$
 - Best-Case: $O(b^{h/2})$
 - Space: $O(bh)$

Why is the Worst-Case Runtime equal to MiniMax?

In the Worst-Case, your Alpha Beta is running MiniMax!

$b =$ Branching Factor
$h =$ Height of the Tree
Alpha Beta for 2 Player Games

- Game Trees get really big really fast
 - Grows exponentially
 - Alpha Beta Pruning is more efficient than Minimax
- Used for many games
 - Tic-Tac-Toe
 - Chess
 - Go
- Heuristic is easily incorporated
 - A Heuristic is a mapping from a game state to a value
 - Ex: In Chess, White Pieces - Black Pieces = Value
 - This is a bad heuristic to use
 - We use heuristics when we do not want calculate every end game state
Real Life Use: Pokemon

- I created an AI simulation that simulates a competitive battling scenario
 - Used Java
 - Dictionary of Pokemon
 - Dictionary of Moves
 - Battle Game Tree
 - Alpha Beta Pruning to Traverse tree
 - Minimax to Check Alpha Beta
 - 12 different classes
Example

- **Play Rough**
- **Shadow Claw**
- **Switch to Marshadow**

Mimikyu HP: 55
Deoxys HP: 50

Mimikyu HP: 55
Deoxys HP: 0

- **Psycho Boost**
- **Ice Beam**
- **Switch**

Mimikyu HP: 55
Deoxys HP: 35

- **Psycho Boost**
 - **Ice Beam**
 - **Switch**

Marshadow HP: 90
Deoxys HP: 50

- **Psycho Boost**
- **Ice Beam**
- **Switch**

Mimikyu HP: 55
Deoxys HP: 0

Mimikyu HP: 55
Deoxys HP: 35

Marshadow HP: 90
Deoxys HP: 50
Example

Play Rough

Mimikyu HP: 55
Deoxys HP: 50

Switch to Marshadow

Psycho Boost

Psycho Boost

Switch

Switch

Psycho Boost

Ice Beam

Ice Beam

Ice Beam

Switch

Switch

Switch

Mimikyu HP: 55
Deoxys HP: 50

Marshadow HP: 90
Deoxys HP: 50

Mimikyu HP: 55
Deoxys HP: 35

Mimikyu HP: 55
Deoxys HP: 0

Deoxys HP: 35

Deoxys HP: 0