START
RECORDING

Mod Arithmetic

CMSC250

Modular Arithmetic

* We say that a = b (mod m) (read “ais congruent to b mod m”) means
that m |(a — b).

* Examples:
e 6 =2 (mod4)
« 81 =0 (mod9)

* 91 = 0 (mod 13)
« 100 = 2 (mod 7)

e Convention: 0 <b<m-—1
* THINK: Take large number a, divide by m, remainder is b
* Terminology: “Reducing a mod m”

VS

* In Logic, @; = @, mean that ¢, and ¢, have the same truth table
(are logically equivalent)

* In Number Theory, a = b (mod m), read “a is congruent to

b mod m”) meansm |(a — b)!

VS

* In Logic, @; = @, mean that ¢, and ¢, have the same truth table
(are logically equivalent)

* In Number Theory, a = b (mod m), read “a is congruent to
b mod m”) meansm |(a — b)!

* THESE TWO ARE VERY DIFFERENT!!!! THEY HAVE
NOTHING TO DO WITH EACH OTHER!

Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; +a,) = (by + b,)(mod m)

Properties of congruence

1. Ifa; = by (mod m) and a, = b, (mod m), then:
(a; + a,) = (by + b,)(mod m)

Proof:
* a; = by (modm) = m|(a; — by)
« @ €Z)a;— by =m-1r](l)
* Similarly, @r, € Z)[a, — b, = m - 1,] (1)
* Therefore, by (/) and (I!) we have:

a,—b;+a,—b,=m-rn+m-rn=>@@ +ay,)—(by+by)=m-(ry+1r,)=>

a, +a, = (b + b,)(mod m)

Properties of congruence

2. Ifa; = by (mod m) and a, = b, (mod m), then

a, -a, = by - b, (mod m)

Properties of congruence

Proof: Let a; = bi(mod m) and ax = b>(mod m). By definition,
jm = a; — by and km = ao> — bs with j. k € Z. So, jm + by = a; and
Km + bo = a». Then,

ai -as = (jm+ by)(km + b2)

— jkm® + kmb + jmbo + by - by
= m(jkm + kby + jb2) + b1 - b2

So, (a1 - az) — (b1 - b2) = m(jkm + kby + jb2). Since
jkm + Kb -|-jb2 €/Z,ay-a = Dby - bg(mﬂd ."T.')

Proof with modular arithmetic

* Claim: Any two integers of opposite parity sum to an odd number.

* Proof:
* Since a4, a, are opposite parity. Assume that

a; = 0 (mod 2) and a, = 1 (mod 2)

* Using the properties of modular arithmetic, we obtain:

a;+a, =0+ 1)(mod 2) =1 (mod 2)
* Done.

More proofs

* Similarly, you can show that (Va € N)[a? + a = 0 (mod 2)]

More proofs

e Similarly, you can show that (Va € N)[a? + a = 0 (mod 2)]
* Proof: We will simplify notation by assuming that “ = " is the same as

" = (mod 2)" We have two cases:

1. a=0.Then,a?+a=0%+0=0.Done.
2 a=1.Then,a’+a=1%+1= 0. Done.

More Proofs Using Mod
s (Vn €Z)[(m*=0(mod2)) = (n=0(mod?2))]

More Proofs Using Mod
s (Vn €Z)[(m*=0(mod2)) = (n=0(mod?2))]
* Proving this directly is somewhat hard
* On the other hand, the contrapositive:

(Vn € Z)[(n £ 0 (mod 2)) = (n?% 0 (mod 2))]

is much easier!

More Proofs Using Mod
e (Vn € Z)[(n*= 0 (mod 2)) = (n =0 (mod 2))]
* Proving this directly is somewhat hard
* On the other hand, the contrapositive:

(Vn € Z)| (n * 0 (mod 2)) = (n*Z 0 (mod 2))]
is much easier!

* Proof (with mods): Since n # 0 (mod 2), we have that n = 1 (mod 2). So,

by properties of congruence, we have that n® = 1% = 1 (mod 2). Done.

More Proofs Using Mod

e (Vn € Z)[(n*= 0 (mod 2)) = (n =0 (mod 2))] Now

* Proving this directly is somewhat hard ey
PORTALS

* On the other hand, the contrapositive: MODS

(Vvn € Z)[(n # 0 (mod 2)) = (n?# 0 (mod 2))]
is much easier!

: Since n # 0 (mod 2), we have thatn = 1 (mod 2). So,

by properties of congruence, we have that n® = 1% = 1 (mod 2). Done.

Algorithms on divisibility

1. Modular Exponentiation (Repeated Squaring)
2. Greatest Common Divisor (GCD)

Basic assumptions

- a+ band a - b have unit cost
« Thisis not true if a, b are too large

First problem

How fast can we compute a™ mod m (n,m € N)?

First problem

How fast can we compute a™ mod m (n,m € N)?

1. Obviously, we can compute a™ = a X a X --- X a and mod that large
number by m. n times

First problem

How fast can we compute a™ mod m (n,m € N)?

1. Obviously, we can compute a™ = a X a X --- X a and mod that large
number by m. n times

* Problems:
* Arithmetic overflow in computation of a™
e Modding a large guantity is tough on the FPU

First problem, second approach

2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.

First problem, second approach

2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.

* Pr :
* Arithmetic OW— mputation of a”
. Is tough © PU

First problem, second approach

2. We could start computinga X a X --- X a until the product
becomes larger than m, reduce and repeat until we’re done.

* Pr :
* Arithmetic OW— mputation of a”
. Is tough © PU

* Additionally, we have another nice property...

First problem

* How fast can we compute a” mod m (n,m € N)?

We can do it in roughly

Something Else
logn steps

We always need n We can do itin
steps roughly v/n steps

First problem

* How fast can we compute a™ mod m (n,m € N)?

We can do it in roughly

Something Else
logn steps

We always need n We can do itin
steps roughly v/n steps

Example

364

 Computing mod 99 in log, 64 = 6 steps.

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All=are= (mod 99).

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All=are= (mod 99).
1. 32 =9

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.

 All=are= (mod 99).
1. 32 =9
2 32 =((3%)%=9%2=81

Example

Computing 3°* mod 99 in log, 64 = 6 steps.

All = are = (mod 99).

1. 32 =9

2 32 =((3%)%=9%2=81
3 3 =(3") =812 =27

* Computing

Example

3°* mod 99 in log, 64 = 6 steps.

 All=are= (mod 99).

1

2.
3.
4.

32
32
32
32

=9

= (3%)?=9%2=381
= (3°) =812 = 27
= (3°)° =272 = 36

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.
 All=are= (mod 99).
1. 32 =9
32" =(3%)?2=9%2=381
32" = (37) =812 = 27
= (3°)° =272 = 36
32" = (324)2 =362=9

SR N
O8]
N

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.
 All=are= (mod 99).

32 =9

32" =(3%)?2=9%2=381

32" = (37) =812 = 27

32" = (32) = 272 = 36

32" = (324)2 =362=9

32 =(9)% =81

N oA W NN

Example

e Computing 3°* mod 99 in log, 64 = 6 steps.
e All=are= (mod 99).

32 =9

32" =(3%)? =92 =381
32" = (37) =812 = 27
32" = (323)2 =272 = 36
32" = (32") =362 =9
. 32" =(9)2 =81

. Aha! 36% = 32° = 81

N A WON N

Good news, bad news

* Good news: By using repeated squaring, can compute a© mod m
quickly (roughly ¥ = log, 2° steps)

 Bad news: What if our is not a power of 27

Example

e Computing 3% mod 99 with the same method
 All=are= (mod 99).

o 31 =
¢ 3% =
. 32°=(32)2=92=81
. 320 = (322)2 =812 = 27
. 32" = (323)2 =272% =36
e 327 =316 x 3% x 32 x 31 =36 x 27 x 9 X

Example (contd.)

- To avoid large numbers, reduce product as you go:

e 327 =316 % 38 % 32 x 31 =36 X 27 X 9 X 3 =

36 X 27)X (9 X 3) =81 x 27=9

Exercise

* Solve the following for r please!

53* = r (mod 117)

Algorithm to compute a™ (mod m) in logn steps

 Step1: Writen =291 4292 4 ... 4+ 297, g, < q, < -+ < @,
* Step 2: Note that @™ = @271 +2%2++297 — 5291 5 . % 2"
e Step 3: Use repeated squaring to compute:

a?’ a? a? .. a®" mod m

i i\ 2
using a2 = (az) (mod m)

* Step 4: Compute a?™ x - x a?” mod m reducing when necessary
to avoid large numbers

The key step

The key step is Step #3: Use repeated squaring to compute:

0 1 2 q
a’ ,a? ,a*,..,a*" modm
. <2
. +1 A
using a® = = (az) (mod m)
2i+1

N 2
When computing a mod m, already have computed (az) (mod m)

Note that all numbers are below m because we reduce mod m every step
of the way

2
* So (azl) is unit cost and anything mod m is also unit cost!

Second problem: Greatest Common Divisor
(GCD)

* Ifa, b € N*° then the GCD of g, b is the largest non-zero integer n
suchthatn [aandn | b

Second problem: Greatest Common Divisor
(GCD)

* Ifa, b € N*° then the GCD of g, b is the largest non-zero integer n
suchthatn [aandn | b

e Whatis the GCD of...
e 10 and 157

Second problem: Greatest Common Divisor
(GCD)

* Ifa, b € N*° then the GCD of g, b is the largest non-zero integer n
suchthatn [aandn | b

e Whatis the GCD of...
e 10and 15?5
e 12and90?

Second problem: Greatest Common Divisor
(GCD)

* Ifa, b € N*° then the GCD of g, b is the largest non-zero integer n
suchthatn [aandn | b

* What is the GCD of...
e 10and 15?5
e 12and 90?6
e 20and29?

Second problem: Greatest Common Divisor
(GCD)

* Ifa, b € N*° then the GCD of g, b is the largest non-zero integer n
suchthatn [aandn | b

e Whatis the GCD of...
e 10and 15?5
12 and 90? 6

20 and 29? 1 (20 and 29 are called co-prime or relatively prime)
153 and 181

Second problem: Greatest Common Divisor
(GCD)

* Ifa, b € N*° then the GCD of g, b is the largest non-zero integer n
suchthatn [aandn | b

e Whatis the GCD of...
e 10and 15?5
12 and 90? 6

20 and 29? 1 (20 and 29 are called co-prime or relatively prime)
153 and 181

Euclid’s GCD algorithm

e Recall:lIfa =0 (modm)andb =0 (modm),thena —b =0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this
recursion (assume a > b):

GCD(a,b) = GCD(a,b — a)

Until its arguments are the same.

Greatest Common Divisor (GCD)

e Recall:Ifa =0 (modm)andb =0 (modm),thena —b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this
recursion

GCD(a,b) = GCD(a,b —a)
Until its arguments are the same.

* Question: If we implement this in a programming language, it can only be
done recursively

Yes No
(why) (Why)

Something Else
(What)

Greatest Common Divisor (GCD)

e Recall:Ifa =0 (modm)andb =0 (modm),thena —b = 0 (mod m)

 The GCD algorithm finds the greatest common divisor by executing this

recursion _
GCD(a, b) = GCD(a,b —a) Tall

Until its arguments are the same. recursion
 Question: If we implement this in a programming language, it can only be
done recursively e s

while(left != right){

if(left > right)
Yes Something Else elsieft = left - right;
wh What
(why) () right = right - left;

}

print "GCD is: " left; // or rignht

GCD example

+ GCD(18, 100) =

GCD(18, 100 — 18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46)
GCD(18, 46 — 18) = GCD(18, 28)
GCD(18, 28 — 18) = GCD(18, 10)
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2)
GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4- 2, 2) = GCD(2, 2) = 2

GCD example

e GCD(18, 100) =
GCD(18, 100 — 18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) = Given integers a, b with a > b (without loss of
GCD(18, 64 —18) = GCD(18,46) = generality), approximately how many steps
GCD(18, 46 — 18) = GCD(18, 28) = does this algorithm take?
GCD(18, 28 — 18) = GCD(18, 10) =

GCD(18 - 10, 10) = GCD(S, 10)= a steps b steps
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 -2, 2) = GCD(6, 2) =

GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4- 2, 2) = GCD(2, 2) = 2

a-b steps Something Else

GCD example

GCD(18, 100) =

GCD(18, 100 — 18) = GCD(18, 82)=

GCD(18, 82 — 18 = GCD(18, 64) = Given integers a, b with a > b (without loss of
GCD(18, 64 —18) = GCD(18,46) = generality), approximately how many steps
GCD(18, 46 — 18) = GCD(18, 28) = does this algorithm take?

GCD(18, 28 — 18) = GCD(18, 10) =

GCD(18 - 10, 10) = GCD(S, 10)= a steps b steps
GCD(8, 10 - 8)= GCD(8, 2) =

GCD(8-2,2) = GCD(6, 2) = N coughy
GCD(6- 2, 2) = GCD(4, 2) = 2 steps Something Else o
GCD(4-2,2) = GCD(2,2) =2

N

Can we do better?

NG Something
Else

. GCD(18, 100) =

GCD(18, 100 — 18) = GCD(18, 82)=
GCD(18, 82 — 18 = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46)
GCD(18, 46 — 18) = GCD(18, 28)
GCD(18, 28 — 18) = GCD(18, 10)
GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8, 10 - 8)= GCD(8, 2) =
GCD(8 - 2, 2) = GCD(6, 2)
GCD(6 - 2, 2) = GCD(4, 2) =
GCD(4- 2, 2) = GCD(2, 2) =2

Can we do better?

GCD(18, 100) =

GCD(18, 100 - 18) = GCD(18, 82)=
GCD(18, 82 —18) = GCD(18, 64) =
GCD(18, 64 — 18) = GCD(18, 46) =
GCD(18, 46 — 18) = GCD(18, 28) =
GCD(18, 28 - 18) = GCD(18, 10) = _|

GCD(18 - 10, 10) = GCD(8, 10)=
GCD(8,10-8)=GCD(8,2)=
GCD(8-2,2) = GCD(6, 2) =
GCD(6-2,2) = GCD(4, 2) =

— GCD(8-3x2,2)

GCD(4-2,2)=GCD(2,2)=2

Something
Else

__ GCD(18, 100 - 5 x 18)

GCD(18, 100) =
GCD(18, 100 — 5 x 18) = GCD(18,
10) =
GCD(18 - 10, 10) = GCD(8, 10) =
GCD(8, 10 - 8) = GCD(8, 2) =
GCD(8—3x2,2)=GCD(2,2) =2

From 10 to 4 steps!

How fast is this new algorithm?

* Given non-zero integers a, b with a > b, roughly how many steps
does this new algorithm take to compute GCD(a, b)?

»: log, a Something Else

How fast is this new algorithm?

* Given non-zero integers a, b with a roug)hly how many steps does
this new algorithm take to compute GCD(a b):

-
* Infact, it take , where ¢ = !

* Proof by Gabriel Lamé in 1844, considered by some to be the first ever
result in Algorithmic CompIeX|ty theory.

STOP
RECORDING

