START RECORDING

Order-Preserving Bijections

CMSC 250

\mathbb{N} , \mathbb{Z} : the Same, or Different?

- 1. There is a bijection from \mathbb{N} to \mathbb{Z} : so same size. (AS SETS)
- 2. But they seem different (as ordered sets)
- 3. How to pin down the difference?

Order-Preserving Bijections

• **Definition:** Let A and B be ordered sets. $(A, B \subseteq \mathbb{R})$, ordering the usual (\leq). An **order-preserving bijection** (henceforth: **OPB**) $f: A \mapsto B$ is a bijection such that

$$(x < y) \Leftrightarrow f(x) < f(y)$$

- If A and B are two ordered sets and there exists an OPB from A to B, then we say that they are of the same ordinality
 - Clearly, same ordinality implies same cardinality.

Order-Preserving Bijections

• **Definition:** Let A and B be ordered sets. $(A, B \subseteq \mathbb{R})$, ordering the usual (\leq). An **order-preserving bijection** (henceforth: **OPB**) $f: A \mapsto B$ is a bijection such that

statement! $(x < y) \Leftrightarrow f(x) < f(y)$

- If A and B are two ordered sets and there exists an OPB from A to B, then we say that they are of the same ordinality
 - Clearly, same ordinality implies same cardinality.

Examples

• There is an OPB between \mathbb{N} and \mathbb{N}^{even} : $f(x) = 2 \cdot x$.

Examples

• There is an OPB between \mathbb{N} and \mathbb{N}^{even} : $f(x) = 2 \cdot x$.

Examples

• There is an OPB between \mathbb{N} and \mathbb{N}^{even} : $f(x) = 2 \cdot x$.

• Other sets with OPBs: \mathbb{N} , \mathbb{N}^{odd} , $\mathbb{N}^{\equiv (0 \bmod 3)}$, $\mathbb{N}^{\equiv i \pmod j}$, $\mathbb{N}^{\geq 17}$, ...

• There is no OPB from \mathbb{N} to \mathbb{Z} .

- There is no OPB from \mathbb{N} to \mathbb{Z} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{N} \mapsto \mathbb{Z}$. Let f(0) = y.

- There is no OPB from \mathbb{N} to \mathbb{Z} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{N} \mapsto \mathbb{Z}$. Let f(0) = y.
 - Now, finish yourselves!

- There is no OPB from \mathbb{N} to \mathbb{Z} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{N} \mapsto \mathbb{Z}$. Let f(0) = y.
 - Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to y 1.

N, Z: Different!

- There is no OPB from \mathbb{N} to \mathbb{Z} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{N} \mapsto \mathbb{Z}$. Let f(0) = y.
 - Now, finish yourselve!
- Let $x \in \mathbb{N}$ map to y 1.
- f(x) < f(0) since f is an OPB.

- There is no OPB from \mathbb{N} to \mathbb{Z} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{N} \mapsto \mathbb{Z}$. Let f(0) = y.
 - Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to y 1.
- f(x) < f(0) since f is an OPB.
- From the defn of OPBs, this means that x < 0.

- There is no OPB from \mathbb{N} to \mathbb{Z} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{N} \mapsto \mathbb{Z}$. Let f(0) = y.
 - Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to y 1.
- f(x) < f(0) since f is an OPB.
- From the defn of OPBs, this means that x < 0.
- Contradiction, since 0 is the least natural.

N, Z: Different!

- There is no OPB from \mathbb{N} to \mathbb{Z} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{N} \mapsto \mathbb{Z}$. Let f(0) = y.
 - Now, finish yourselves!
- Let $x \in \mathbb{N}$ map to y 1.
- f(x) < f(0) since f is an OPB.
- From the defn of OPBs, this means that x < 0.
- Contradiction, since 0 is the least natural.
- Therefore, there is no OPB from \mathbb{N} to \mathbb{Z} .

Is $\mathbb{N} \prec \mathbb{Z}$?

- Of course!
- But how can we say this rigorously? (A, B ordered sets)
- **Defn:** $A \leq B$ if there is an OPI (Order-Preserving Injection) from A into B.
- **Defn:** $A \prec B$ if there is an OPI from A into B but there is no OPS (Order-Preserving Surjection) from A into B!
 - Advice: Stick with injection and surjection here instead of OPONETOONE or OPONTO.

Is $\mathbb{N} \prec \mathbb{Z}$?

- Of course!
- But how can we say this rigorously? (A, B ordered sets)
- **Defn:** $A \leq B$ if there is an OPI (Order-Preserving Injection) from A into B.
- **Defn:** $A \prec B$ if there is an OPI from A into B but there is no OPS (Order-Preserving Surjection) from A into B!
 - **Advice**: Stick with injection and surjection here instead of OPONETOONE or OPONTO.
- Note: $A \leq B$ is read "A is less than or equal to B" with the understanding that it applies to A, B ordered sets.

1. Theorem: There exists an OPI from \mathbb{N} to \mathbb{Z} .

- **1. Theorem:** There exists an OPI from \mathbb{N} to \mathbb{Z} .
 - Can you guess what it is?

- **1. Theorem:** There exists an OPI from \mathbb{N} to \mathbb{Z} .
 - Can you guess what it is?
 - Identity mapping f(n) = n.

- **1. Theorem:** There exists an OPI from \mathbb{N} to \mathbb{Z} .
 - Can you guess what it is?
 - Identity mapping f(n) = n.
- **2.** Theorem: There is no OPS from \mathbb{N} to \mathbb{Z} .
 - Follows from proof that there is no OPB from \mathbb{N} to \mathbb{Z} .

- **1. Theorem:** There exists an OPI from \mathbb{N} to \mathbb{Z} .
 - Can you guess what it is?
 - Identity mapping f(n) = n.
- **2.** Theorem: There is no OPS from \mathbb{N} to \mathbb{Z} .
 - Follows from proof that there is no OPB from $\mathbb N$ to $\mathbb Z$.
- 3. Corollary: $\mathbb{N} < \mathbb{Z}$
 - Follows from Theorems 1 and 2

Z, Q: Different or the Same?

- **1. Theorem:** There is no OPB from \mathbb{Z} to \mathbb{Q} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{Z} \mapsto \mathbb{Q}$. Let $f(0) = y_1, f(1) = y_2$. Then, f is clearly an **OPS** as well!
 - Now, finish yourselves at your desks!

\mathbb{Z} , \mathbb{Q} : Different or the Same?

- **Theorem:** There is no OPB from \mathbb{Z} to \mathbb{Q} .
- Proof (by contradiction): Assume there exists an OPB $f: \mathbb{Z} \mapsto \mathbb{Q}$. Let $f(0) = y_1, f(1) = y_2$. Then, f is clearly an **OPS** as well!
 - Now, finish yourselves at your desks!
- Let $x \in \mathbb{Z}$ map to $\frac{y_1 + y_2}{2}$
- $(0 < 1) \Rightarrow (f(0) < f(1)) \Rightarrow (y_1 < y_2)$, since f is an OPB.
- $y_1 < \frac{y_1 + y_2}{2} < y_2$ since $\frac{y_1 + y_2}{2}$ arithmetic mean of y_1 , y_2
- Henceforth, 0 < x < 1
- Contradiction, since $x \in \mathbb{Z}$
- So there is no OPB from \mathbb{Z} to \mathbb{Q} .

$\mathbb{Z} \prec \mathbb{Q}$

- **1. Theorem:** There exists an OPI from \mathbb{Z} to \mathbb{Q} .
 - Identity mapping f(z) = z.
- **2.** Theorem: There is no OPS from \mathbb{Z} to \mathbb{Q} .
 - Follows from proof that there is no OPB from N to Z
- Corollary: $\mathbb{Z} < \mathbb{Q}$
 - Follows from Theorems 1 and 2
- Note that we now have:

$$\mathbb{N} \prec \mathbb{Z} \prec \mathbb{Q}$$

Orderings of Type N

- Recall: The following sets are of cardinality \aleph_0 :
 - \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $\mathbb{N} \times \mathbb{N}$, ...
- What sets are of ordinality *N*?
 - \mathbb{N} , \mathbb{N}^{even} , \mathbb{N}^{odd} , $\mathbb{N}^{\equiv (0 \pmod{3})}$, $\mathbb{N}^{\equiv i \pmod{j}}$, $\mathbb{N}^{\geq 17}$, ...

Orderings of Type N

- Recall: The following sets are of cardinality \aleph_0 :
 - \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $\mathbb{N} \times \mathbb{N}$, ...
- What sets are of ordinality N?
 - N, Neven, Nodd, $N \equiv (0 \mod 3)$, $N \equiv i \pmod j$, $N \ge 17$, ...
- Is the following set of ordinality \mathbb{N} ?

$$\left\{0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots\right\}$$

Yes

No

Unknown to science

Orderings of Type N

- Recall: The following sets are of cardinality \aleph_0 :
 - \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $\mathbb{N} \times \mathbb{N}$, ...
- What sets are of ordinality N?
 - \mathbb{N} , \mathbb{N}^{even} , \mathbb{N}^{odd} , $\mathbb{N}^{\equiv (0 \bmod 3)}$, $\mathbb{N}^{\equiv i \pmod j}$, $\mathbb{N}^{\geq 17}$, ...
- Is the following set of ordinality \mathbb{N} ?

$$f(n) = \frac{2^{n} - 1}{2^{n}} \begin{cases} 0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots \\ 0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots \\ 0, \frac{1}{1}, \frac{3}{2}, \frac{7}{3}, \dots \end{cases}$$

Unknown to science

Another Ordering

Consider ordering

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

Another Ordering

Consider ordering

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

What do you call this?

Another Ordering

Consider ordering

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

What do you call this?

$$\mathbb{N} + \mathbb{N}$$

How Do $\mathbb{N} + \mathbb{N}$ and \mathbb{Z} Compare?

Incomparable

Unknown to science

How Do $\mathbb{N} + \mathbb{N}$ and \mathbb{Z} Compare?

Incomparable

Unknown to science

$\mathbb{N} + \mathbb{N} \prec \mathbb{Z}$

• Recall: $\mathbb{N} + \mathbb{N}$ is:

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

• While \mathbb{Z} is:

$$\dots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots$$

• To say that $\mathbb{N} + \mathbb{N} \prec \mathbb{Z}$ would be equivalent to saying that there exists an OPI from $\mathbb{N} + \mathbb{N}$ to \mathbb{Z} .

$$\mathbb{N} + \mathbb{N} \prec \mathbb{Z}$$

• $\mathbb{N} + \mathbb{N}$ is:

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

$$\mathbb{N} + \mathbb{N} \prec \mathbb{Z}$$

• $\mathbb{N} + \mathbb{N}$ is:

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

$$\dots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots < 499 < 500 < \dots$$

• Suppose we actually do have an OPI $f: \mathbb{N} + \mathbb{N} \to \mathbb{Z}$ such that f(0) = -3, f(1) = 500.

$\mathbb{N} + \mathbb{N} \prec \mathbb{Z}$

• $\mathbb{N} + \mathbb{N}$ is:

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < \frac{3}{2} < \frac{7}{4} < \dots$$

$$\dots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots < 499 < 500 < \dots$$

- Suppose we actually do have an OPI $f: \mathbb{N} + \mathbb{N} \to \mathbb{Z}$ such that f(0) = -3, f(1) = 500.
 - Impossible, since there are 504 elements between -3 and 500 in $\mathbb Z$ (finite number), while there are infinite elements between 0 and 1 in $\mathbb N+\mathbb N!$

$\mathbb{N} + \mathbb{N} \prec \mathbb{Z}$

• $\mathbb{N} + \mathbb{N}$ is:

- Suppose we actually do have an OPI $f: \mathbb{N} + \mathbb{N} \to \mathbb{Z}$ such that f(0) = -3, f(1) = 500.
 - Impossible, since there are 504 elements between -3 and 500 in \mathbb{Z} (finite number), while there are infinite elements between 0 and 1 in $\mathbb{N} + \mathbb{N}$!
 - Therefore, no such OPI f can exist.

$$\mathbb{Z} \prec \mathbb{N} + \mathbb{N}$$

- It is also the case that $\mathbb Z$ cannot be injected (with a preserved ordering) into $\mathbb N+\mathbb N$
- Recall: $\mathbb{N} + \mathbb{N}$ is:

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

• While \mathbb{Z} is:

$$\dots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots$$

$\mathbb{Z} \prec \mathbb{N} + \mathbb{N}$

• Suppose that we have such an OPI f from \mathbb{Z} to $\mathbb{N} + \mathbb{N}$.

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

$$\dots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots$$

$$\mathbb{Z} \prec \mathbb{N} + \mathbb{N}$$

• Suppose that we have such an OPI f from \mathbb{Z} to $\mathbb{N} + \mathbb{N}$.

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

$$f$$

$$\dots < -3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots$$

• Suppose f(-3) = 0. Then, what would f(-4) be?

$$\mathbb{Z} \prec \mathbb{N} + \mathbb{N}$$

• Suppose that we have such an OPI f from \mathbb{Z} to $\mathbb{N} + \mathbb{N}$.

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < \frac{3}{2} < \frac{7}{4} < \dots$$

$$0 < \frac{1}{2} < \frac{3}{4} < \dots < 1 < 0 < 1 < 2 < 3 < \dots$$

- Suppose f(-3) = 0. Then, what would f(-4) be?
 - Since f is order-preserving, there is no such element in $\omega + \omega$!
 - Therefore, no such OPI f can possibly exist!

How Do $\mathbb{N} + \mathbb{N}$ and \mathbb{Q} Compare?

Incomparable

Unknown to science

How Do $\mathbb{N} + \mathbb{N}$ and \mathbb{Q} Compare?

• We leave the proofs of both $\mathbb{N} + \mathbb{N} \leq \mathbb{Q}$ and $\mathbb{N} + \mathbb{N} \neq \mathbb{Q}$ to you.

Take-Home Message

- Orders can be non-comparable.
- Cardinalities are always comparable.

STOP RECORDING