START
RECORDING
Discrete Probability

CMSC 250
Axiomatic Definitions,
Basic Problems with Cards
Informal Definition of Probability

• Probability that blah happens:

\[
\frac{\text{# possibilities that } \text{blah happens}}{\text{# all possibilities}}
\]
Informal Definition of Probability

• Probability that *blah* happens:

\[
\frac{\text{# possibilities that } \text{blah happens}}{\text{# all possibilities}}
\]

• This definition is owed to Andrey Kolmogorov, and assumes *that all possibilities are equally likely!*
First Examples

• Experiment #1: Tossing the same coin 3 times.
First Examples

• Experiment #1: Tossing the same coin 3 times.
 • What is the probability that I don’t get any heads?

\[
\begin{array}{ll}
\frac{1}{3} & \frac{1}{8} \\
\frac{1}{9} & \text{Something else}
\end{array}
\]
First Examples

• Experiment #1: Tossing the same coin 3 times.
 • What is the probability that I don’t get any heads?
 • Why?
 • Set of different events?
 • \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} (8 of them)
 • Set of events with no heads:
 • \{TTT\} (1 of them)
 • Hence the answer: \(\frac{1}{8}\)
First Examples

• Experiment #1: Tossing the same coin 3 times.
 • What is the probability that I don’t get any heads?
 • Why?
 • Set of different events?
 • \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} (8 of them)
 • Set of events with no heads:
 • \{TTT\} (1 of them)
 • Hence the answer: \(\frac{1}{8}\)

Implicit assumption: all individual outcomes (HHH, HHT, HTH,) are considered equally likely (probability 1/8)
Practice

• Experiment #2: I roll two dice.
 • Probability that I hit seven = ?

\[
\begin{array}{cccc}
\frac{1}{12} & \frac{1}{6} & \frac{7}{12} & \text{Something else}
\end{array}
\]
Practice

• Experiment #2: I roll two dice.
 • Probability that I hit seven = ?
 • Why?
 • Set of different events?
 • \{(1, 1), (1, 2), \ldots, (6, 1)\} (36 of them)
 • Set of events where we hit 7.
 • \{(2, 5), (5, 2), (3, 4), (4, 3), (1, 6), (6, 1)\} (6 of them)
 • Hence the answer: \(\frac{6}{36} = \frac{1}{6}\)
Practice

- Experiment #2: I roll two dice.
 - Probability that I hit **seven** = ?
 - Why?
 - Set of different **events**?
 - { (1, 1), (1, 2), ..., (6, 1) } (36 of them)
 - Set of events where we hit 7.
 - { (2, 5), (5, 2), (3, 4), (4, 3), (1, 6), (6, 1) } (6 of them)
 - Hence the answer: \(\frac{6}{36} = \frac{1}{6} \)
 - Probability that I hit **two** = ?
Practice

• Experiment #2: I roll two dice.
 • Probability that I hit seven = ?
 • Why?
 • Set of different \textit{events}?
 • \{(1, 1), (1, 2), \ldots, (6, 1)\} (36 of them)
 • Set of events where we hit 7.
 • \{(2, 5), (5, 2), (3, 4), (4, 3), (1, 6), (6, 1)\} (6 of them)
 • Hence the answer: \(\frac{6}{36} = \frac{1}{6}\)
 • Probability that I hit \textit{two} = ?
 • Same procedure
 • \(\frac{1}{12}\)
Poker Practice

• Full deck = 52 cards, 13 of each suit:
Poker Practice

• Full deck = 52 cards, 13 of each suit:
 • **Flush**: 5 cards of the same suit
 • What is the probability of getting a flush?
Probability of a Flush

• How many 5-card hands are there?
Probability of a Flush

• How many 5-card hands are there? $\binom{52}{5}$
Probability of a Flush

• How many 5-card hands are there? \(\binom{52}{5} \)

• How many 5-card hands are flushes?
Probability of a Flush

• How many 5-card hands are there? \(\binom{52}{5}\)

• How many 5-card hands are flushes?
 • Choose a suit in one of 4 ways...
Probability of a Flush

• How many 5-card hands are there? \(\binom{52}{5} \)

• How many 5-card hands are flushes?
 • Choose a suit in one of 4 ways...
 • Given suit choose any 5 cards out of 13...
Probability of a Flush

- How many 5-card hands are there? \(\binom{52}{5} \)

- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...
 - Given suit choose any 5 cards out of 13...
 - So \(4 \ast \binom{13}{5} \)
Probability of a Flush

• How many 5-card hands are there? \(\binom{52}{5} \)

• How many 5-card hands are flushes?
 • Choose a suit in one of 4 ways...
 • Given suit choose any 5 cards out of 13...
 • So \(4 \times \binom{13}{5} \)

• So, probability of being dealt a flush is

\[
\frac{4 \times \binom{13}{5}}{\binom{52}{5}}
\]
Probability of a Flush

- Probability of being dealt a flush is

\[
4 \times \binom{13}{5} \frac{(52)}{(5)}
\]
Probability of a Flush

• Probability of being dealt a flush is

\[
4 \times \binom{13}{5} \div \binom{52}{5}
\]

• How likely is this?
Probability of a Flush

• Probability of being dealt a flush is

\[\frac{4 \times \binom{13}{5}}{\binom{52}{5}} \]

• How likely is this?
 • Not at all likely: \(\approx 0.002 = 0.2\% \) 😞
Likelihood of a Straight

• Straights are 5 cards of **consecutive rank**
 • Ace can be **either end** (high or low)
 • **No wrap-arounds** (e.g. Q K A 2 3, suits don’t matter)

• What is the probability that we are dealt a straight?
Likelihood of a Straight

- **Straight**s are 5 cards of *consecutive rank*:
 - Ace can be *either end* (high or low)
 - *No wrap-arounds* (e.g. Q K A 2 3, suits don’t matter)

- What is the probability that we are dealt a straight?

- As before, #possible 5-card hands = \[\binom{52}{5} \]
Likelihood of a Straight

- **Straights** are 5 cards of *consecutive rank*
 - Ace can be *either end* (high or low)
 - *No wrap-arounds* (e.g. Q K A 2 3, suits don’t matter)
- What is the probability that we are dealt a straight?
 - As before, #possible 5-card hands = \(\binom{52}{5} \)
- To find out the #straights:
 - Pick lower rank in 10 ways (A-10)
 - Pick a suit in 4 ways
 - Pick the 4 subsequent cards *from any suit* in \(4^4 \) ways
Likelihood of a Straight

• **Straights** are 5 cards of *consecutive rank*
 • Ace can be *either end* (high or low)
 • *No wrap-arounds* (e.g. Q K A 2 3, suits don’t matter)

• What is the probability that we are dealt a straight?

• As before, #possible 5-card hands = \(\binom{52}{5} \)

• To find out the #straights:
 • Pick lower rank in 10 ways (A-10)
 • Pick a suit in 4 ways
 • Pick the 4 subsequent cards *from any suit* in \(4^4 \) ways

That’s \(10 \times 4^5 \) ways.
So, probability of a straight = \(\frac{10 \times 4^5}{\binom{52}{5}} \)
Caveat on Flushes

- Wikipedia says we’re wrong about flushes!
- Formally, our flushes included (for example) $3h\ 4h\ 5h\ 6h\ 7h$
 - Hands like these are called straight flushes and Wikipedia does not include them.
Caveat on Flushes

• Wikipedia says we’re wrong about flushes!
• Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 • Hands like these are called straight flushes and Wikipedia does not include them.
 • How many straight flushes are there?
Caveat on Flashes

• Wikipedia says we’re wrong about flushes!
• Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 • Hands like these are called straight flushes and Wikipedia does not include them.
 • How many straight flushes are there?
• 40. Here’s why:
 • Pick rank: A through 10 (higher ranks don’t allow straights) in 10 ways
 • Pick suit in 4 ways
Probability of Non-Straight Flush...

\[
\frac{4 \times \binom{13}{5} - 40}{\binom{52}{5}} = 0.001965
\]

- This is how Wikipedia defines the probability of a flush. 😊
Probability of a Straight Flush...

\[\frac{40}{\binom{52}{5}} = 0.0000138517 \]
Probability of a Straight Flush...

\[
\frac{40}{\binom{52}{5}} = 0.0000138517
\]

The expected number of hands you need to play to get a straight flush is then

\[
\left\lfloor \frac{1}{0.0000138517} \right\rfloor = 72,194
\]
Same Caveat for Straights

• From the #straights we computed we will have to subtract the 40 possible straight flushes to get...

\[
\frac{10 \times 4^5 - 40}{\binom{52}{5}} = 0.003925
\]
Same Caveat

• From the #straights we computed we will have to subtract the 40 possible straight flushes to get...

\[
\frac{10\times4^5-40}{\binom{52}{5}} = 0.003925 > 0.001965 = \text{probability of flush}
\]

• *Flushes, being more rare, beat straights in poker.*
Probability of a Pair

• Try to calculate the probability of a pair!
Probability of a Pair

• Try to calculate the probability of a **pair**!

• Perhaps you thought of the problem like this:
 1. The denominator will be \(\binom{52}{5} \) (easy), so let’s focus on the **numerator**:

 1. First choose rank in 13 ways.
 2. Then, choose two of four suits in \(\binom{4}{2} = 6 \) ways.
 3. Then, choose 3 cards out of 50 in \(\binom{50}{3} \) ways.
Probability of a Pair

• Try to calculate the probability of a pair!

• Perhaps you thought of the problem like this:

 • The denominator will be \(\binom{52}{5} \) (easy), so let’s focus on the numerator:

 1. First choose rank in 13 ways.
 2. Then, choose two of four suits in \(\binom{4}{2} = 6 \) ways.
 3. Then, choose 3 cards out of 50 in \(\binom{50}{3} \) ways.

 Numerator: \(13 \times 6 \times \binom{50}{3} \)
Probability of a Pair

• Try to calculate the probability of a pair!
• Perhaps you thought of the problem like this:
 • The denominator will be $\binom{52}{5}$ (easy), so let’s focus on the numerator:
 1. First choose rank in 13 ways.
 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways.
 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.
 Numerator: $13 \times 6 \times \binom{50}{3}$
• So, probability $= \frac{13 \times 6 \times \binom{50}{3}}{\binom{52}{5}}$
Probability of a Pair

• Try to calculate the probability of a pair!

• Perhaps you thought of the problem like this:

 • The denominator will be \(\binom{52}{5} \) (easy), so let’s focus on the numerator:

 1. First choose rank in 13 ways.
 2. Then, choose two of four suits in \(\binom{4}{2} = 6 \) ways.
 3. Then, choose 3 cards out of 50 in \(\binom{50}{3} \) ways.

 • So, probability = \(\frac{13 \times 6 \times \binom{50}{3}}{\binom{52}{5}} \)

 Numerator: \(13 \times 6 \times \binom{50}{3} \)

 Is this accurate?

 Yes No
Probability of a Pair

• Try to calculate the probability of a pair!

• Perhaps you thought of the problem like this:
 • The denominator will be $\binom{52}{5}$ (easy), so let’s focus on the numerator:
 1. First choose rank in 13 ways.
 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways.
 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.
 • So, probability = $\frac{13 \times 6 \times \binom{50}{3}}{\binom{52}{5}}$

• Numerator: $13 \times 6 \times \binom{50}{3}$

Is this accurate?

Severe overcount!

Yes

No
Don’t Count Better Hands!

• In the computation before, we included:
 • 3-of-a-kind
 • 4-of-a-kind
 • etc

• To properly compute, we would have to subtract all better hands possible with at least one pair.
Joint Probability
Joint Probability (“AND” of Two Events)

• The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
 • $P(A \cap B)$ (Most useful from a set-theoretic perspective; we’ll be using this)
 • $P(A, B)$ (One sees this a lot in Physics books)
 • $P(AB)$ (Perhaps most convenient, therefore most common)
Calculating Joints

• Probability that the first coin toss is heads and the second coin toss is tails
Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails: $\frac{1}{2} \times \frac{1}{2}$
Calculating Joints

• Probability that the first coin toss is heads and the second coin toss is tails \(\frac{1}{2} \times \frac{1}{2} \)
• Probability that the first die is at most a 2 and the second one is 5 or 6
Calculating Joints

• Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
• Probability that the first die is at most a 2 and the second one is 5 or 6
 • # outcomes of die roll is 6
 • # outcomes where first die is at most 2 is 2
 • Hence, probability of first die roll being at most 2 is $\frac{1}{3}$
Calculating Joints

• Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$

• Probability that the first die is at most a 2 and the second one is 5 or 6
 • # outcomes of die roll is 6
 • # outcomes where first die is at most 2 is 2
 • Hence, probability of first die roll being at most 2 is $\frac{1}{3}$
 • Similarly, probability of second die roll being 5 or 6 is $\frac{1}{3}$.

• Hence, probability that both events happen (joint probability) is $\frac{1}{9}$.
Calculating Joints

• Jason’s going to flip a coin and then pick a card from a 52-card deck.
 • Probability that the coin is heads and the card has rank 8?

\[
\frac{1}{2} \quad \frac{1}{26} \quad \frac{1}{32} \quad \text{Something else}
\]
Calculating Joints

• Jason’s going to flip a coin and then pick a card from a 52-card deck
 • Probability that the coin is heads and the card has rank 8?

 - This is because \(P(\text{coin} = H) = \frac{1}{2} \) and \(P(\text{card_rank} = 8) = \frac{4}{52} = \frac{1}{13} \)
 - So their joint probability is \(\frac{1}{2} \times \frac{1}{13} = \frac{1}{26} \)
The Law of Joint Probability

\[P(A \cap B) = P(A) \cdot P(B) \]

\[P(A_1 \cap A_2 \cap \cdots \cap A_n) = \prod_{i=1}^{n} P(A_i) \]
The Law of Joint Probability

\[P(A \cap B) = P(A) \cdot P(B) \]

\[P(A_1 \cap A_2 \cap \cdots \cap A_n) = \prod_{i=1}^{n} P(A_i) \]

- Unfortunately, this “law” is not always applicable!
- It is applicable only when all the different events \(A_i \) are independent (sometimes called marginally independent) of each other.
- Let’s look at an example.
What If The Events Influence Each Other?

• Probability that a die is even and that it is 2.
What If The Events Influence Each Other?

• Probability that a die is even and that it is 2.
 • Probability that the die is even $= \frac{1}{2}$
What If The Events Influence Each Other?

• Probability that a die is even and that it is 2.
 • Probability that the die is even = $\frac{1}{2}$
 • Probability that the die is two = $\frac{1}{6}$
What If The Events Influence Each Other?

• Probability that a die is even and that it is 2.
 • Probability that the die is even = \(\frac{1}{2} \)
 • Probability that the die is two = \(\frac{1}{6} \)
 • Probability the die is even and the die is two = \(\frac{1}{12} \)
What If The Events Influence Each Other?

• Probability that a die is even and that it is 2.
 • Probability that the die is even = $\frac{1}{2}
 • Probability that the die is two = $\frac{1}{6}$
 • Probability the die is even and the die is two = $\frac{1}{12} \ ?$
 • NO!
 • What is the probability that the die is even and the die is 2?
What If The Events Influence Each Other?

• Probability that a die is even and that it is 2.
 • Probability that the die is even $= \frac{1}{2}$
 • Probability that the die is two $= \frac{1}{6}$
 • Probability the die is even and the die is two $= \frac{1}{12}$???
 • NO!
 • What is the probability that the die is even and the die is 2?
Notice that the event A: “Die roll is even” is a superset of the event B: “Die roll comes 2”

Since $A \cap B = A$, $P(A \cap B) = P(A) = \frac{1}{6}$
Calculating Joints

• The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)

• What is the probability that Jason gets both an A and a G in that course?
Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and a G in that course?
 - Clearly, it can’t be

\[
(\text{probability Jason gets an A}) \times (\text{probability Jason gets a B}) = \frac{1}{7} \times \frac{1}{7} = \frac{1}{49}
\]
Calculating Joints

• The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)

• What is the probability that Jason gets both an A and a G in that course?
 • Clearly, it can’t be

\[
(\text{probability Jason gets an A}) \times (\text{probability Jason gets a B}) = \frac{1}{7} \times \frac{1}{7} = \frac{1}{49}
\]
Calculating Joints

• The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)

• What is the probability that Jason gets **both** an A and a G in that course?
 • Clearly, it **can’t** be

 \[
 \text{(probability Jason gets an A)} \times \text{(probability Jason gets a B)} = \frac{1}{7} \times \frac{1}{7} = \frac{1}{49}
 \]

• It is 0. Those two events cannot happen **jointly**!
• The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)

• What is the probability that Jason gets both an A and a G in that course?
 • Clearly, it can’t be
 \[
 \text{(probability Jason gets an A) } \times \text{ (probability Jason gets a B) } = \frac{1}{7} \times \frac{1}{7} = \frac{1}{49}
 \]

 • It is 0. Those two events cannot happen jointly!
 • Events such as these are called disjoint or mutually disjoint.
Set-Theoretic Interpretation

• A = “Jason gets an A in USND’s 250”
• G=“Jason gets a G in USND’s 250”

\[A \cap G = \emptyset \]

• Note that \(A \cap G = \emptyset \), so there are no common outcomes.
 • So \(P(A \cap G) = 0 \)
Calculating Joints

• I have my original die again.
 • Probability that it comes up 1, 2 or 3 = \(\frac{1}{2} \)
 • Probability that it comes up 3, 4 or 5 = \(\frac{1}{2} \)
 • What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?
Calculating Joints

• I have my original die again.
 • Probability that it comes up 1, 2 or $3 = \frac{1}{2}$
 • Probability that it comes up 3, 4 or 5 = $\frac{1}{2}$
 • What is the probability that it comes up 1, 2 or $3 \text{ and } 3$, 4 or 5?

\[
\begin{array}{cccc}
\frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3}
\end{array}
\]
Calculating Joints

• I have my original die again.
 • Probability that it comes up 1, 2 or 3 = \(\frac{1}{2}\)
 • Probability that it comes up 3, 4 or 5 = \(\frac{1}{2}\)
 • What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

\[
\begin{align*}
\frac{1}{6} & \quad \frac{1}{5} & \quad \frac{1}{4} & \quad \frac{1}{3}
\end{align*}
\]

• Note that the only common outcome between the two events is 3, which can come up only once out of six possibilities.
Set-Theoretic Interpretation

- Let A = dice comes up 1, 2, or 3
- Let B = dice comes up 3, 4, or 5
- Let C = dice comes up 1, 2, 3, 4, 5 OR 6
Set-Theoretic Interpretation

- Let $A = \text{dice comes up 1, 2, or 3}$
- Let $B = \text{dice comes up 3, 4, or 5}$
- Let $C = \text{dice comes up 1, 2, 3, 4, 5 OR 6}$

Then, probability that the dice comes up 3 = \(\frac{1}{6} \)
Dependent and Independent Events
Independent Events *(informally)*

- Two events are independent if **one does not influence the other.**
- **Examples:**
 - The event E_1 = “first coin toss” and E_2 = “second coin toss”
 - With the same die, the events E_1 = “roll 1”, E_2 = “roll 2”, E_3 = “roll 3”
 - Jason flips a coin and then picks a card.
- **Counter-examples:**
 - E_1 = “Die is even”, E_2=“Die is 6”
 - E_1= “Grade in 250” and “Passing 250”
Law of Joint Probability *(informally)*

- Two events are independent if **one does not influence the other**.
 - This definition is a but **too informal**, so mathematicians tend to avoid it.
- Formally, we define that A and B are **independent** if

\[P(A \cap B) = P(A) \cdot P(B) \]
Disjoint or Independent?

1. \(E_1 = \) “It rains in College Park, MD today”
 \(E_2 = \) “It rains in Athens, Greece today”

 [Disjoint] [Independent] [Both] [Neither]
1. $E_1 = \text{“It rains in College Park, MD today”}$
$E_2 = \text{“It rains in Athens, Greece today”}$

Disjoint or Independent?

Weather is weird!
Disjoint or Independent?

1. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It rains in Athens, Greece today”}$
 - Disjoint
 - Independent
 - Both
 - Neither

2. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It is sunny in College Park, MD today”}$
 - Disjoint
 - Independent
 - Both
 - Neither

Weather is weird!
1. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It rains in Athens, Greece today”}$
 - Disjoint
 - Independent
 - Both
 - Neither

2. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It is sunny in College Park, MD today”}$
 - Disjoint
 - Independent
 - Both
 - Neither

Weather is weird!
Disjoint or Independent?

1. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It rains in Athens, Greece today”}$

 Disjoint

2. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It is sunny in College Park, MD today”}$

 Disjoint

3. $E_1 = \text{Die #1 comes at most 4}$
 $E_2 = \text{Die #2 comes at least 5}$

 Disjoint

Weather is weird!
Disjoint or Independent?

1. \(E_1 = \) “It rains in College Park, MD today”
 \(E_2 = \) “It rains in Athens, Greece today”

2. \(E_1 = \) “It rains in College Park, MD today”
 \(E_2 = \) “It is sunny in College Park, MD today”

3. \(E_1 = \) Die #1 comes at most 4
 \(E_2 = \) Die #2 comes at least 5

<table>
<thead>
<tr>
<th>Disjoint</th>
<th>Independent</th>
<th>Both</th>
<th>Neither</th>
</tr>
</thead>
</table>
| \(E_1 = \) “It rains in College Park, MD today”
 \(E_2 = \) “It rains in Athens, Greece today” | **Disjoint** | **Independent** | **Both** | **Neither** |
| \(E_1 = \) “It rains in College Park, MD today”
 \(E_2 = \) “It is sunny in College Park, MD today” | **Disjoint** | **Independent** | **Both** | **Neither** |
| \(E_1 = \) Die #1 comes at most 4
 \(E_2 = \) Die #2 comes at least 5 | **Disjoint** | **Independent** | **Both** | **Neither** |

Weather is weird!
Disjoint or Independent?

1. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It rains in Athens, Greece today”}$

2. $E_1 = \text{“It rains in College Park, MD today”}$
 $E_2 = \text{“It is sunny in College Park, MD today”}$

3. $E_1 = \text{Die #1 comes at most 4}$
 $E_2 = \text{Die #2 comes at least 5}$

4. $E_1 = \text{Student gets a C}$
 $E_2 = \text{Student passes the class}$

Weather is weird!
1. $E_1 = "It rains in College Park, MD today"$
 $E_2 = "It rains in Athens, Greece today"

2. $E_1 = "It rains in College Park, MD today"
 $E_2 = "It is sunny in College Park, MD today"

3. $E_1 = \text{Die #1 comes at most 4}$
 $E_2 = \text{Die #2 comes at least 5}$

4. $E_1 = \text{Student gets a C}$
 $E_2 = \text{Student passes the class}$

Weather is weird!

Disjoint or Independent?

- Disjoint
- Independent
- Both
- Neither
Recap: “Disjoint” vs “Independent”

• Friends don’t let friends get confused between “disjoint” and “independent”!

<table>
<thead>
<tr>
<th>Disjoint</th>
<th>Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has a set-theoretic interpretation!</td>
<td>Has a causality interpretation!</td>
</tr>
<tr>
<td>Means that $P(A \cap B) = 0$</td>
<td>Means that $P(A \cap B) = P(A) \cdot P(B)$</td>
</tr>
<tr>
<td>Means that $P(A \cup B) = P(A) + P(B)$</td>
<td>Means that $P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$</td>
</tr>
</tbody>
</table>
Disjoint Probability ("OR” of Two Events)

• Jason rolls two dice.
 • What is the probability that he rolls a 7 or a 9?
Disjoint Probability ("OR" of Two Events)

• Jason rolls two dice.
 • What is the probability that he rolls a 7 or a 9?
 • #Ways to roll a 7 is 6.
 • #Ways to roll a 9 is 4: (6, 3), (5, 4), (4, 5), (3, 6)
 • #Ways to roll a 7 OR a 9 is then 10.
 • Therefore, the probability is \(\frac{10}{36} = \frac{5}{18} \)
 • Key: Rolling a 7 and a 9 are disjoint events.
Disjoint Probability (“OR”)

• 52-card deck
• Probability of drawing a face card (J, Q, K) or a heart
Disjoint Probability ("OR")

• 52-card deck
• Probability of drawing a face card (J, Q, K) or a heart
 • Are these disjoint?
Disjoint Probability (“OR”)

• 52-card deck
• Probability of drawing a face card (J, Q, K) or a heart
 • Are these disjoint?
 • NO, for example, Queen of hearts
• How big is $\text{Face_Card} \cup \text{Hearts}?$
Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
 - Are these disjoint?
 - *NO*, for example, Queen of hearts
- How big is $\text{Face_Card} \cup \text{Hearts}$ (abbrv. F, H below)?
 - Use law of inclusion / exclusion!

\[
|F \cup H| = |F| + |H| - |F \cap H| = 12 + 13 - 3 = 22
\]
Disjoint Probability ("OR")

• 52-card deck
• Probability of drawing a face card (J, Q, K) or a heart
 • Are these disjoint?
 • NO, for example, Queen of hearts
• How big is $\text{Face Card} \cup \text{Hearts}$ (abbrv. F, H below)?
 • Use law of inclusion / exclusion!

\[
|F \cup H| = |F| + |H| - |F \cap H| = 12 + 13 - 3 = 22
\]

• So probability $= \frac{22}{52} = \frac{11}{26}$.
Alternative Viewpoint

- \(P(F) = \frac{12}{52} \)
- \(P(H) = \frac{13}{52} \)
- \(P(F \cap H) = \frac{3}{52} \)
- \(P(F \cup H) = P(F) + P(H) - P(F \cap H) \)
Probability of Unions

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

• If A and B are independent, we have

\[P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B) \]

• If A and B are disjoint, we have

\[P(A \cup B) = P(A) + P(B) \]
Probability of Unions of 3 Sets

\[P(A \cup B \cup C) = P(A) + P(B) + P(C) \]
\[\quad - P(A \cap B) - P(B \cap C) - P(A \cap C) \]
\[\quad + P(A \cap B \cap C) \]

- If A, B and C are pairwise independent, we have:
 \[P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A) \cdot P(B) - P(B) \cdot P(C) - P(A) \cdot P(C) + P(A \cdot B \cdot C) \]

- If A, B and C are pairwise disjoint (so \(A \cap B = A \cap C = B \cap C = \emptyset \), so clearly \(A \cap B \cap C = \emptyset \)), we have
 \[P(A \cup B \cup C) = P(A) + P(B) + P(C) \]
Conditional Probability and Bayes’ Law
Conditional Probability

• If A occurs, then is B
 a) More likely?
 b) Equally likely?
 c) Less likely?
Conditional Probability

• If A occurs, then is B
 a) More likely?
 b) Equally likely?
 c) Less likely?

• Any of these could happen, it depends on the relationship between A and B.
Conditional Probability

• If A occurs, then is B
 a) More likely?
 b) Equally likely?
 c) Less likely?

• Any of these could happen, it depends on the relationship between A and B.
Examples

• We roll two dice
 • Event A = “Sum of the dice $S \equiv 0 \pmod{4}$”
 • Note that $P(A) = \frac{9}{36} = \frac{1}{4}$, since we have nine rolls of the dice that sum to a multiple of 4:
 $$(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)$$
 • Event B = “The first die comes up 3”
 • Note that $P(B) = \frac{6}{36} = \frac{1}{6}$
Examples

• We roll two dice
 • Event A = “Sum of the dice $S \equiv 0 \pmod{4}$”
 • Note that $P(A) = \frac{9}{36} = \frac{1}{4}$ since we have nine rolls of the dice that sum to a multiple of 4:
 (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 • Event B = “The first die comes up 3”
 • Note that $P(B) = \frac{6}{36} = \frac{1}{6}$

• What is the probability of A given B?
Examples

• What is the probability of A given B?
Examples

• What is the probability of A given B?
 • Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 • Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
 • Outcomes of rolling two dice: (1, 1), (1, 2), ..., (6, 5), (6, 6)
Examples

• What is the probability of A given B?
 • Outcomes of A are $(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)$
 • Outcomes of B are $(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)$
 • Outcomes of rolling two dice: $(1, 1), (1, 2), ..., (6, 5), (6, 6)$
Examples

• What is the probability of A given B?
 • Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 • Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
 • Outcomes of rolling two dice: (1, 1), (1, 2), ..., (6, 5), (6, 6)

• As discussed, $P(A) = \frac{9}{36} = \frac{1}{4}$

• However, once B occurs, instead of 36 outcomes, we now have...
Examples

• What is the probability of A given B?
 • Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 • Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
 • Outcomes of rolling two dice: (1, 1), (1, 2), ..., (6, 5), (6, 6)

• As discussed, \(P(A) = \frac{9}{36} = \frac{1}{4} \)

• However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
Examples

• What is the probability of A given B?
 • Outcomes of A are $(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)$
 • Outcomes of B are $(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)$
 • Outcomes of rolling two dice: $(1, 1), (1, 2), \ldots, (6, 5), (6, 6)$

• As discussed, $P(A) = \frac{9}{36} = \frac{1}{4}$

• However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
 • Only 2 of them are outcomes that correspond to A.
Examples

• What is the probability of A given B?
 • Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 • Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
 • Outcomes of rolling two dice: (1, 1), (1, 2), ..., (6, 5), (6, 6)

• As discussed, $P(A) = \frac{9}{36} = \frac{1}{4}$

• However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
 • Only 2 of them are outcomes that correspond to A.
 • Therefore, the probability of A given B is $\frac{2}{6} = \frac{1}{3}$
Examples

• We once again two roll dice
 • Event A = “Sum of the dice is ≥ 8”
 • Event B = “First die is 4”
Examples

• We once again two roll dice
 • Event A = “Sum of the dice is ≥ 8”
 • Event B = “First die is 4”

• If B happens, what is your intuition about the probability of A?
Examples

• We once again two roll dice
 • Event A = “Sum of the dice is ≥ 8”
 • Event B = “First die is 4”

• If B happens, what is your intuition about the probability of A?

 Go up
 Go down
 Stay the same
 Unknown to science
Examples

• We once again two roll dice
 • Event A = “Sum of the dice is ≥ 8”
 • Event B = “First die is 4”

• If B happens, what is your intuition about the probability of A?

Let’s see if your intuition was correct!
Examples

• We once again two roll dice
 • Event A = “Sum of the dice is \(\geq 8 \)” \(P(A) = ? \) (work on it)
 • Event B = “First die is 4”
Examples

• We once again two roll dice
 • Event A = “Sum of the dice is ≥ 8” $P(A) = \frac{15}{36} = \frac{5}{12}$
 • Event B = “First die is a 4”
Examples

• We once again two roll dice
 • Event A = “Sum of the dice is ≥ 8” $P(A) = \frac{15}{36} = \frac{5}{12}$
 • Event B = “First die is a 4” $P(B) = \frac{1}{6}$
Examples

- We once again roll two dice
 - Event A = “Sum of the dice is ≥ 8” \(P(A) = \frac{15}{36} = \frac{5}{12} \)
 - Event B = “First die is a 4” \(P(B) = \frac{1}{6} \)
 - Prob of A given B = Prob second die is 4, 5, or 6 = \(\frac{3}{6} = \frac{1}{2} > \frac{5}{12} \)

By just \(\frac{1}{12} \)...

- Go up
- Go down
- Stay the same
- Unknown to science
Conditional Probability

• Let A, B be two events. The conditional probability of A given B, denoted $P(A \mid B)$ is defined as follows:

\[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \]
Re-Thinking Independent Events

• Alternative definition of independent events: Two events A and B will be called marginally independent, or just independent for short, if and only if

$$P(A|B) = P(A)$$
Re-Thinking Independent Events

• **Alternative definition of independent events**: Two events A and B will be called marginally independent, or just independent for short, if and only if

\[P(A|B) = P(A) \]

• Applying the definition of \(P(A|B) \) we have:
 • \(\frac{P(A \cap B)}{P(B)} = P(A) \Rightarrow P(A \cap B) = P(A) \cdot P(B) \), which is a relationship we had reached earlier when discussing the joint probability.
Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• I pick either one of them with probability $\frac{1}{2}$
Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.

• I pick either one of them with probability $\frac{1}{2}$ and roll it.
 • What’s the probability that the die comes up 6? (work on this yourselves **NOW**)
Suppose that I have two dice: a six-sided one and a ten-sided one.

I pick either one of them with probability \(\frac{1}{2} \).

What’s the probability that the die comes up 6? (work on this yourselves NOW)

\[
P(Roll = 6) = P(Roll = 6, Die = 6) + P(Roll = 6, Die = 10) =
\]

\[
= P(Roll = 6|Die = 6) \times P(Die = 6) + P(Roll = 6|Die = 10) \times P(Die = 10)
\]

\[
= \frac{1}{6} \times \frac{1}{2} + \frac{1}{10} \times \frac{1}{2} = \frac{1}{12} + \frac{1}{20} = \frac{2}{15} \approx 0.1333 \ldots
\]
Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.

• Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.

• Intuitively, will the probability that I come up with a 6...
Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob \(\frac{5}{9}\) and the six-sided die with prob \(\frac{4}{9}\).
• Intuitively, will the probability that I come up with a 6...
Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now **we change the problem** so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
• Intuitively, will the probability that I come up with a 6...

Let’s see if your intuition was correct!
Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.

• Now we change the problem so that we pick the ten-sided die with prob \(\frac{5}{9} \) and the six-sided die with prob \(\frac{4}{9} \).

• What’s the probability that I come up with a 6?

\[
P(Roll = 6) = P(Roll = 6, Die = 6) + P(Roll = 6, Die = 10) =
\]
\[
= P(Roll = 6 | Die = 6) \times P(Die = 6) + P(Roll = 6, Die = 10) \times P(Die = 10) =
\]
\[
= \frac{1}{6} \times \frac{4}{9} + \frac{1}{10} \times \frac{5}{9} = \frac{2}{27} + \frac{1}{18} = \frac{7}{54} \approx 0.130 < 0.133
\]
Bayes’ Law

• Suppose A and B are events in a sample space Ω. Then, the following is an identity:

$$P(A|B) = P(B|A) \frac{P(A)}{P(B)}$$

known as Bayes’ Law
Questions

• If $P(A|B) = P(A)$, is it the case that $P(B|A) = P(B)$?

Yes No
Questions

• If $P(A|B) = P(A)$, is it the case that $P(B|A) = P(B)$?

- Yes
- No

• Substituting $P(A|B)$ with $P(A)$ in the formulation of Bayes’ Law, we have:

$$P(A) = P(B | A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1 = \frac{P(B|A)}{P(B)} \Rightarrow P(B|A) = P(B)$$
Questions

• If \(P(A|B) = P(A) \), is it the case that \(P(B|A) = P(B) \)?)

- Yes
- No

\((A \text{ ind } B) \text{ iff } (B \text{ ind } A)\)

• Substituting \(P(A|B) \) with \(P(A) \) in the formulation of Bayes’ Law, we have:

\[
\overline{P(A)} = P(B | A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1 = \frac{P(B|A)}{P(B)} \Rightarrow P(B|A) = P(B)
\]
Questions

• If $P(B) = 0$, then is $P(A|B)$ also 0?

Yes No
Questions

• If $P(B) = 0$, then is $P(A|B)$ also 0?

[Yes] [No]

• It is **undefined**, since $P(A \mid B) = P(B \mid A) \cdot \frac{P(A)}{P(B)}$
STOP
RECORDING