
START RECORDING

Module 1: Propositional Logic

- The most elementary kind of logic in Computer Science
- Also known as Boolean Logic, by virtue of *George Boole* (1815 1864)

Propositional Symbols

- The building blocks of propositional logic.
- Think of them as bits or boxes that hold a value of 1 (True) or 0 (False)
- Denoted using a lowercase english letter (p, q, ..., a)

р

Operations in boolean logic

- There are three basic operations in boolean logic
 - Conjunction (AND)
 - Disjunction (OR)
 - Negation (NOT)
- Other operations can be defined in terms of those three.

Negation (NOT, \sim , \neg)

p	$\sim p$
F	T
<i>T</i>	F

Conjunction (^)

p	q	$p \wedge q$
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Conjunction (^)

p	q	$p \wedge q$
F	F	F
F	Т	F
T	F	F
T	Τ	T

→ Rule of thumb: p <u>and</u> q must be 1

р	q	$p \wedge (\sim q)$
F	F	
F	Т	?
T	F	?
Т	Т	?

р	q	$p \wedge (\sim q)$
F	F	
F	Т	
Т	F	
Т	Т	

p	q	$p \wedge (\sim q)$
F	F	F
F	Т	
Т	F	
Т	Т	

p	q	$p \wedge (\sim q)$
F	F	F
F	Т	F
T	F	
T	Т	

p	q	$p \wedge (\sim q)$
F	F	F
F	Т	F
Т	F	T
Т	Т	

р	q	$p \wedge (\sim q)$
F	F	F
F	Т	F
T	F	T
T	Т	F

Disjunction

p	q	$p \vee q$
F	F	F
F	Т	Т
T	F	Т
T	Т	Т

Disjunction

p	q	$p \lor q$
F	F	F
F	Т	Т
T	F	Т
T	Т	Т

Rule of thumb: one of p or q must be 1

p	q	$p \lor (p \land q)$
F	F	?
F	Т	?
T	F	?
T	Т	?

p	q	$p \lor (p \land q)$
F	F	
F	Т	
T	F	
T	Т	

p	q	$p \lor (p \land q)$
F	F	F
F	Т	
T	F	
T	Т	

p	q	$p \lor (p \land q)$
F	F	F
F	Т	F
T	F	
T	Т	

р	q	$p \lor (p \land q)$
F	F	F
F	Т	F
Т	F	Т
Т	Т	

p	q	$p \lor (p \land q)$
F	F	F
F	Т	F
T	F	T
T	Т	T

• Fill-in the following truth table:

p	q	$p \lor (p \land q)$
F	F	F
F	Τ	F
T	F	T
T	Т	T

Anything interesting here?

• Fill-in the following truth table:

p	q	$p \lor (p \land q)$
F	F	F
F	T	F
\ <i>T</i>	F	T
T	Т	T /

Anything interesting here?

Implication (\Longrightarrow)

• "If -then"

p	q	$p \Rightarrow q$
F	F	T
F	Т	T
T	F	F
T	T	T

Implication (\Longrightarrow)

• "If -then"

р	q	$p \Rightarrow q$
F	F	T
F	Т	T
Т	F	F
T	Т	T

- Gorslax, an alien from the Andromeda Galaxy, visits planet Earth on a scientific expedition.
- Gorslax's planet has a very strong gravitational field which does not allow for the evolution of aviary life.
 - So he starts studying Earth's birds.



bird	flies	$bird \Rightarrow flies$
F	F	Т
F	Τ	Τ
τ	F	F
T	Т	T

Well this thing clearly doesn't fly, but it's also not a bird, so I don't care; I still believe that all birds fly!

bird	flies	$bird \Rightarrow flies$
F	F	T
F	Т	Τ
Т	F	F
Τ	Т	Τ

While this thing does fly, it's not a bird, so I don't care; I still believe that all birds fly!

bird	flies	$bird \Rightarrow flies$
F	F	Τ
F	Т	T
Τ	F	F
τ	T	T

Whoops! Here's at least one bird that doesn't fly! So my syllogism "if bird then flies" does not universally apply!

bird	flies	$bird \Rightarrow flies$
F	F	Т
F	Т	Т
T	F	F
Т	Т	T

Bi-conditional (\Leftrightarrow)

"If and only if"

p	q	$p \Leftrightarrow q$
F	F	T
F	Т	F
T	F	F
T	T	T

Practice

р	$p \Longrightarrow (\sim p)$
F	?
Т	?

p	q	r	$(p \land q) \Rightarrow r$
F	F	F	?
F	F	T	?
F	T	F	?
F	T	Т	?
T	F	F	?
T	F	Т	?
T	T	F	?
T	T	T	?

Contradictions / Tautologies

- Examine the statements:
 - $p \wedge (\sim p)$
 - *p* ∨ (~*p*)
- What can you say about those statements?

- This is useful when we get to circuits
- What is AND, OR, and NOT?
- NOT = 1-x

\boldsymbol{x}	$\sim x$
F	T
T	F

х	1-x
0	1
1	0

- What is AND, OR, NOT?
- AND = xy

\boldsymbol{x}	У	$x \wedge y$
F	F	F
F	Т	F
T	F	F
<i>T</i>	Т	T

\boldsymbol{x}	у	xy
0	0	o
0	1	0
1	0	0
1	1	1

- What is AND, OR, and NOT?
- OR = x+y? NO!

\boldsymbol{x}	У	$x \lor y$
F	F	F
F	Т	T
T	F	T
7	Т	T

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	10

- What is AND, OR, and NOT?
- OR = x+y-xy

\boldsymbol{x}	у	$x \vee y$
F	F	F
F	Т	T
T	F	T
T	Т	<i>T</i>

\boldsymbol{x}	У	x + y	x + y - xy
0	0	0	0
0	1	1	1
1	0	1	1
1	1	10	1

STOP RECORDING