Reciprocal Theorems
THE Reciprocal Theorem

Thm \((\forall n \geq 3)(\exists d_1 < \cdots < d_n)\) such that

\[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}. \]
THE Reciprocal Theorem

\textbf{Thm} \ (\forall n \geq 3)(\exists d_1 < \cdots < d_n) \text{ such that} \\
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.

We will proof this theorem an infinite number of ways.
The Reciprocal Theorem

Thm $(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$ such that
\[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}. \]

We will proof this theorem an infinite number of ways.

All of them will be by induction.
Base Case for All of the Proofs

We will usually only need the $n = 3$ base case:
Base Case for All of the Proofs

We will usually only need the \(n = 3 \) base case:

\[
1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}.
\]
Base Case for All of the Proofs

We will usually only need the $n = 3$ base case:

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}.$$

We may sometimes need the $n = 4$ base case:
We will usually only need the $n = 3$ base case:
$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$.

We may sometimes need the $n = 4$ base case:
$\frac{1}{2} + \frac{1}{3} + \frac{1}{8} + \frac{1}{24} = 1$.
Proof One. This was on Midterm Two
IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$
IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n + 1)$. We use that $\frac{1}{d_n} = \frac{1}{d_{n+1}} + \frac{1}{d_n(d_{n+1})}$.
IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n + 1)$. We use that $\frac{1}{d_n} = \frac{1}{d_{n+1}} + \frac{1}{d_n(d_{n+1})}$.

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n} = \frac{1}{d_1} + \cdots + \frac{1}{d_{n-1}} + \frac{1}{d_n+1} + \frac{1}{d_n(d_n+1)}.$$
Proof Two. Bigger Base Case and

\[P(n) \rightarrow P(n + 2) \]
An Induction Scheme

Bill wants to prove \((\forall n \geq 3)[P(n)]\).
An Induction Scheme

Bill wants to prove \((\forall n \geq 3)[P(n)]\). So Bill proves
An Induction Scheme

Bill wants to prove \((\forall n \geq 3)[P(n)]\). So Bill proves

\[P(3)\]
An Induction Scheme

Bill wants to prove \((\forall n \geq 3) [P(n)]\). So Bill proves

\[P(3) \]
\[P(4) \]
An Induction Scheme

Bill wants to prove \((\forall n \geq 3)[P(n)]\). So Bill proves

\[P(3)\]
\[P(4)\]
\[(\forall n \geq 3)[P(n) \rightarrow P(n + 2)].\]
An Induction Scheme

Bill wants to prove \((\forall n \geq 3)[P(n)]\). So Bill proves

\[P(3) \]
\[P(4) \]
\[(\forall n \geq 3)[P(n) \to P(n + 2)]. \]

This Works! From the above you can construct a proof of \(P(n)\) for any \(n \geq 3\).
An Induction Scheme

Bill wants to prove \((\forall n \geq 3)[P(n)]\). So Bill proves

\[P(3) \]
\[P(4) \]
\[(\forall n \geq 3)[P(n) \rightarrow P(n + 2)]. \]

This Works! From the above you can construct a proof of \(P(n)\) for any \(n \geq 3\).

For the case at hand we already did the \(n = 3\) and \(n = 4\) base case.
IH \(n \geq 3 \). There exists \(d_1 < \cdots < d_n \) such that
IH \(n \geq 3 \). There exists \(d_1 < \cdots < d_n \) such that

\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]
IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}. $$

IS We prove $P(n) \rightarrow P(n + 2)$.
IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n + 2)$.

We use that $\frac{1}{d_n} = \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}$.
IH and IS

IH \(n \geq 3 \). There exists \(d_1 < \cdots < d_n \) such that

\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]

IS We prove \(P(n) \rightarrow P(n + 2) \).
We use that \(\frac{1}{d_n} = \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n} \).

\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n} = \frac{1}{d_1} + \cdots + \frac{1}{d_{n-1}} + \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}.
\]
Generalization of Proof Two

Proof 2 used

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}

by using
Generalization of Proof Two

Proof 2 used

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

by using

\[\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d} \]
Generalization of Proof Two

Proof 2 used

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

by using

\[\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d} \]

Can we use any way to write 1 as a sum of reciprocals?
Generalization of Proof Two

Proof 2 used

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

by using

\[\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d} \]

Can we use any way to write 1 as a sum of reciprocals? Our next proof does this and make some other points of interest.
Proof Three. Load the IH
Key Equation

Note that

\[1 = \frac{1}{3/2} + \frac{1}{3}. \]

Can we use this? Let's try to use it manually.
Note that

\[1 = \frac{1}{3/2} + \frac{1}{3}. \]

Hence

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}. \]
Note that

\[1 = \frac{1}{3/2} + \frac{1}{3}. \]

Hence

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}. \]

Can we use this?
Note that

\[1 = \frac{1}{3/2} + \frac{1}{3}. \]

Hence

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}. \]

Can we use this?

Let's try to use it manually.
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Can we keep doing this?

Yes.

Can we make this process into a rigorous proof?

Discuss

It works so long as the last number is \(\equiv 0 \pmod{2} \).
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \] Use

Can we keep doing this?

Yes.

Can we make this process into a rigorous proof?

Discuss It works so long as the last number is \(\equiv 0 \pmod{2} \).
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} \]

Can we keep doing this? Yes.

Can we make this process into a rigorous proof? Discuss

It works so long as the last number is \(\equiv 0 \) (mod 2).
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} \]

\[\frac{1}{6} = \frac{1}{9} + \frac{1}{18} \]

Can we keep doing this?

Yes.

Can we make this process into a rigorous proof?

Discuss

It works so long as the last number is \(\equiv 0 \pmod{2} \).
Working Things Out By Hand

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}

Use

\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18} \]

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \]
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18} \]

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{18} = \frac{1}{27} + \frac{1}{54} \]
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18} \]

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{18} = \frac{1}{27} + \frac{1}{54} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54} \]
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18} \]

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{18} = \frac{1}{27} + \frac{1}{54} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54} \]

Can we keep doing this?
Working Things Out By Hand

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}

Use

\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} \quad ; \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}

\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} \quad ; \quad \frac{1}{18} = \frac{1}{27} + \frac{1}{54}

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}

Can we keep doing this? Yes.
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}\] Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18}\]

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{18} = \frac{1}{27} + \frac{1}{54}\]

1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}

Can we keep doing this? Yes.

Can we make this process into a rigorous proof?
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18} \]

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{18} = \frac{1}{27} + \frac{1}{54} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54} \]

Can we keep doing this? Yes.
Can we make this process into a rigorous proof? Discuss
Working Things Out By Hand

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

Use

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{6} = \frac{1}{9} + \frac{1}{18} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18} \]

\[\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} : \quad \frac{1}{18} = \frac{1}{27} + \frac{1}{54} \]

\[1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54} \]

Can we keep doing this? Yes.

Can we make this process into a rigorous proof? Discuss

It works so long as the last number is \(\equiv 0 \) (mod 2).
Proof a Harder Theorem

Convention $\equiv \equiv \ (\text{mod } 2)$.
Proof a Harder Theorem

Convention \(\equiv \) means \(\equiv \pmod{2} \).

Thm \((\forall n \geq 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0) \) such that
\[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}. \]
Proof a Harder Theorem

Convention \(\equiv\) means \(\equiv\) (mod 2).

Thm \((\forall n \geq 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0)\) such that
\[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.\]

We are demanding more, since we demand \(d_n \equiv 0\).
Proof a Harder Theorem

Convention \(\equiv\) means \(\equiv (\text{mod } 2)\).

Thm \((\forall n \geq 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0)\) such that
\[1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]
We are demanding more, since we demand \(d_n \equiv 0\).

But we get to use this in the IH.
Proof a Harder Theorem

Convention \(\equiv \) means \(\equiv \pmod{2} \).

Thm \((\forall n \geq 3)(\exists d_1 < \cdots < d_n, d_n \equiv 0) \) such that
\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]

We are demanding more, since we demand \(d_n \equiv 0 \).

But we get to use this in the IH.

Loading the IH Proving a harder theorem so that the IH is stronger.
IH and IS

IB \(d = 3 \). \(1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}, \ 6 \equiv 0. \)
IH and IS

IB $d = 3$. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$
IH and IS

IB \(d = 3 \). \(1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}, \ 6 \equiv 0 \).

IH \(n \geq 3 \). There exists \(d_1 < \cdots < d_n \) such that \(d_n \equiv 0 \) and

\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]

IS We prove \(P(n) \rightarrow P(n + 1) \).
IH and IS

IB $d = 3$. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$.
We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$.
IH and IS

IB $d = 3$. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n + 1)$.

We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$. Since $d_n \equiv 0$, $3d_n/2 \in \mathbb{N}$.

IH and IS

IB $d = 3$. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n + 1)$.

We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$.

Since $d_n \equiv 0$, $3d_n/2 \in \mathbb{N}$.

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n} = \frac{1}{d_1} + \cdots + \frac{1}{d_{n-1}} + \frac{1}{3d_n/2} + \frac{1}{3d_n}.$$

Also NEED that the last number is $\equiv 0$. It is since $3d_n \equiv d_n \equiv 0$.
Proof Four. A Different Approach
IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$
IH and IS

IH \(n \geq 3 \). There exists \(d_1 < \cdots < d_n \) such that

\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]

IS We prove \(P(n) \rightarrow P(n + 1) \).
IH and IS

IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n + 1)$.

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$
IH \(n \geq 3 \). There exists \(d_1 < \cdots < d_n \) such that

\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]

IS We prove \(P(n) \rightarrow P(n + 1) \).

\[
1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
\]

\[
\frac{1}{2} = \frac{1}{2d_1} + \cdots + \frac{1}{2d_n}.
\]
IH $n \geq 3$. There exists $d_1 < \cdots < d_n$ such that

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n + 1)$.

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.$$

$$\frac{1}{2} = \frac{1}{2d_1} + \cdots + \frac{1}{2d_n}.$$

$$1 = \frac{1}{2} + \frac{1}{2d_1} + \cdots + \frac{1}{2d_n}.$$